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Abstract—We focus on the privacy-accuracy tradeoff
encountered by a user who wishes to release some data
to an analyst, that is correlated with his private data, in
the hope of receiving some utility. We rely on a general
statistical inference framework, under which data is
distorted before its release, according to a probabilistic
privacy mechanism designed under utility constraints.
Using recent results on maximal correlation and hyper-
contractivity of Markov processes, we first propose novel
techniques to design utility-aware privacy mechanisms
against inference attacks, when only partial statistical
knowledge of the prior distribution linking private data
and data to be released is available. We then propose
optimal privacy mechanisms in the class of additive noise
mechanisms, for both continuous and discrete released
data, whose design requires only knowledge of second-
order moments of the data to be released. We then turn
our attention to multi-agent systems, where multiple data
releases occur, and use tensorization results of maximal
correlation to analyze how privacy guarantees compose
after collusion or composition. Finally, we show the
relationship between different existing privacy metrics,
in particular divergence privacy, and differential privacy.

I. INTRODUCTION

A. Motivation

In the era of Big Data, the collection and mining
of user data has become a fast growing and common
practice by a large number of private and public in-
stitutions. These include for instance tech companies,
who exploit user data to offer personalized services
to their customers, government agencies, who rely on
data to address a variety of challenges, e.g. national
security, national health, budget and fund allocation, or
medical institutions, who analyze data to discover the
origins and potential cures to diseases. In some cases,
the collection, the analysis, or the sharing of a user’s
data with third parties is performed without the user’s
consent or awareness. In other cases, data is released
voluntarily by a user to a specific entity, in order to
get a service in return, e.g. product ratings released
to get recommendations. In either case, privacy risks
arise as some of the collected data may be deemed
sensitive by the user, e.g. political convictions, health
status, income level, or may seem harmless at first
sight, e.g. product ratings, yet lead to the inference of

more sensitive data with which it is correlated. The
latter threat refers to an inference attack— inferring
private data by exploiting its correlation with publicly
released data— and is the main focus of this paper.

We consider the setting in [1], where a user has
two kinds of data that are correlated: some data that
he would like to remain private, and some non-private
data that he is willing to release to an analyst and
from which he will derive some utility. The analyst
is a legitimate receiver of the released data, which
he will use to provide utility to the user, but can
also illegitimately exploit to infer the user’s private
data. This creates a tension between privacy and utility
requirements. To reduce the inference threat while
maintaining utility, data is distorted before its release,
according to a privacy-preserving mechanism designed
under utility constraint. We model the privacy-utility
tradeoff according to the general framework for pri-
vacy against statistical inference introduced in [1].
The optimal privacy mapping is the solution of a
convex optimization problem, which minimizes the
information leakage— modeled under the log-loss by
the mutual information between private data and re-
leased data— subject to a utility constraint— average
distortion between original and distorted data [1], [2].

B. Challenges and Contributions

Our contributions address the following challenges
in the design of utility-aware privacy mechanisms.
Design under partial statistical knowledge of the
prior: Finding the optimal privacy mapping as the
solution to the optimization problem in [1], [2] relies
on the fundamental assumption that the prior joint
distribution that links private data and data to be
released is known and can be fed as an input to the
optimization. In practice, the true prior distribution
may not be known, but rather some prior statistics
may be estimated from a set of sample data that can
be observed. For example, the prior joint distribution
could be estimated from a set of users who do not
have privacy concerns and publicly release both their
private and non-private data. Alternatively when the
private data cannot be observed, the marginal distri-



bution of the data to be released, or simply its second
order statistics, may be estimated from a set of users
who only release their non-private data. The statistics
estimated from this set of samples can then be used to
design the privacy mechanism that will be applied to
new users, who are concerned about their privacy. In
practice, there may also exist a mismatch between the
estimated prior statistics and the true prior statistics,
due for example to a small number of observable
samples, or to the incompleteness of samples.

Our first contribution consists in proposing methods
to design utility-aware privacy mechanisms when only
partial statistical knowledge of the prior is available.
More precisely, using recent information theoretic
results on Maximal correlation and hypercontractivity
of Markov process, we first provide an upper-bound on
the information leakage, that decouples the intrinsic
dependencies between the private data and the non-
private data, from the designed dependencies between
the non-private data and the distorted released data.
A fundamental property of this method is that it
allows the design of privacy mechanisms with only
knowledge of the prior marginal of the non-private
data— or even without any knowledge of the prior
distributions— instead of requiring full knowledge of
the joint prior of the private data and non-private
data. As a second contribution, we provide privacy
mechanisms that are optimal in the class of additive
noise mechanisms, namely the Gaussian mechanism
for continuous non-private data, and the discrete noise
mechanism for discrete data.
Privacy of multi-agent systems— Collusion and
Composition: New challenges in the design of privacy
mechanisms arise when multiple data releases to one
or several agents occur. We address the question of
how privacy guarantees compose under multiple re-
leases. The rules of composition of privacy guarantees
help in addressing the issue of colluding agents, who
share together data that was released to them individu-
ally in order to improve their inference of private data.
Composition rules also help in the design of privacy
mechanisms by allowing to break the joint design of
a privacy mechanism for multiple pieces of data into
several simpler design problems for individual pieces
of data. We first focus on the case where the releases
are related to the same private data, and then extend
the analysis to the case where the releases are related
to different but correlated pieces of private data. Using
tensorization results of maximal correlation, we reason
about the cumulative privacy guarantees of the union
of the releases, and show that under some conditions,
privacy guarantees compose according to simple rules.
Comparison of privacy metrics: We compare and
show the relationship between our privacy metric and
different existing privacy metrics, in particular diver-
gence privacy, differential privacy, and information

privacy. We provide examples on the differences in the
privacy-accuracy tradeoffs achieved under these differ-
ent notions. Finally, we show that although differential
privacy is an elegant and well-studied privacy metric,
it does not guarantee a small probability of error in
inferring the private data given the released distorted
data, on the contrary to divergence privacy.

C. Related work

In the database and cryptography literatures from
which differential privacy arose (e.g. [3], [4], [5]), the
focus has been algorithmic; in particular, researchers
have used differential privacy to design privacy pre-
serving mechanisms for inference algorithms, trans-
porting, and querying data. More recent works [6],
[7] focused on the relation of differential privacy
with statistical inference. Other frameworks similar to
differential privacy exist such as the Pufferfish frame-
work [8], which however does not focus on utility
preservation. Many approaches rely on information-
theoretic techniques to model and analyze the privacy-
accuracy tradeoff, such as [9], [10], [11], [12], [1],
[13], [2]. Information-theoretic models [9], [10], [11]
focus mainly on collective privacy for all or subsets of
the entries of a database, and provide fundamental and
asymptotic results on the rate-distortion-equivocation
region as the number of data samples grows arbitrarily
large. In contrast, the framework studied in [1], models
non-asymptotic privacy guarantees in terms of the
inference cost gain that an adversary achieves by
observing the released output. In this work, we follow
the framework in [1], and use the log-loss cost to
model the inference threat as the mutual information
between private data and released data, as in [2], [13].

Composition of privacy guarantees under differen-
tial privacy has been studied, e.g. [5], [14]. The focus
in this paper is on privacy of multi-agent systems
under an information-theoretic privacy metric.

The organization of paper is as follows. In Sec-
tion II, we give the problem formulation. In Sec-
tion III, we propose several methods to design the
privacy mapping under statistical uncertainty. In sec-
tion IV, we study the design of optimal mapping in
the class of additive noise. In Section V, we consider
privacy of multi-agent systems, and finally compare
different privacy metrics in Section VI. Due to lack of
space, we omit proofs, and refer the reader to the full
version of the paper [15].

II. PRIVACY-ACCURACY TRADEOFF

In this section, we first describe the setting, and
the privacy and accuracy metrics. Then, we charac-
terize the privacy-accuracy tradeoff in terms of an
optimization problem. We give a lower bound on the
probability of error in inferring the private data from
the released data, and conclude with the challenges in
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the design of privacy mappings with partial knowledge
of the prior distribution of private and non-private data.

A. Divergence Privacy and Accuracy

We consider a setting where the user has some
private data, represented by the random variable S ∈
S, which is correlated with some non-private data
X ∈ X . The correlation between S and X is captured
by the joint distribution PS,X , while PX denotes the
marginal distribution of X . X can be either discrete, or
continuous, in which case we assume it has a probabil-
ity density function. To reduce the inference threat on
S that would arise from the observation of X , rather
than releasing X , the user releases a distorted version
of X , denoted Y ∈ Y . The distorted data Y is obtained
by passing X through a conditional distribution PY |X ,
called the privacy mapping. Throughout the paper, we
assume S → X → Y form a Markov chain. Therefore,
once we define PY |X , we have the joint distributions
PS,X,Y = PY |XPS,X , and PS,Y .

We first define our privacy metric.
Definition 1. Assume S → X → Y . A conditional
distribution PY |X is called ε-divergence private if the
distributions PS,Y and PY resulting from the joint
distribution PS,X,Y = PY |XPS,X satisfy

D(PS,Y ||PSPY ) = εH(S), (1)

where D(PS,Y ||PSPY ) , E
[
log P (S|Y )

P (S)

]
, I(S;Y )

and ε ∈ [0, 1] is called the leakage factor, and the
mutual information I(S;Y ) represents the information
leakage. We say a mechanism has full privacy if ε = 0.

The extreme case of full privacy ε = 0 is equivalent
to the statistical independence of S and Y . In the other
extreme case ε = 1, no uncertainty is left on S from
the observation of Y .

We define accuracy as follows:
Definition 2. Let d : X × Y → R+ be a distortion
measure. A conditional distribution PY |X is called D-
accurate if E[d(X,Y )] ≤ D.

Definition 3. A privacy mapping PY |X is called
(ε,D)− divergence-distortion private if its leakage
factor and expected distortion are not greater than ε
and D, respectively.

There exists a tradeoff between the leakage factor ε
and the distortion level D achieved by a privacy
mapping. Given the joint distribution PS,X , the op-
timal privacy mapping is defined as the conditional
distribution achieving the minimum objective of

min
PY |X

I(S;Y )

s.t. E[d(X,Y )] ≤ D (2)

The optimization problem (2) was introduced in [2],
[1], and shown to be convex. Next, we give an example
of the optimization given in (2) and its solution.
Example 1. Assume that S has a Bernoulli distri-
bution Bern( 12 ), and that X is the result of passing
S through a binary symmetric channel BSC(p) with
transition probability p ≤ 1

2 . Under the Hamming
distance, the distortion constraint becomes P [X 6=
Y ] ≤ D. It can be shown that the minimum objective
of Optimization (2) is I(S;Y ) = 1 − h(p ∗ D),
where p ∗ D = p(1 − D) + (1 − p)D, and h(.)
denotes the entropy of a Bernoulli random variable.
The optimal privacy mapping generates Y by passing
X into a channel BSC(D). Note that full privacy is
only possible in two trivial cases: either p = 1

2 , i.e. the
non-private X is independent from the private S, and
there is no privacy problem to begin with; or D = 1

2 ,
i.e. the released Y is independent from the original
non-private X , in which case no utility is preserved in
the released data Y .

B. Inference Defeat through Divergence Privacy

One natural and related question is whether a
privacy mapping designed to minimize information
leakage by solving Optimization (2), also provides
guarantees on the probability of error in inferring S
from the observation of Y . In the following proposi-
tion, we provide a lower bound on the error probability
in inferring S from Y , based on Fano’s inequality. It
should be noted that this bound holds for any inference
algorithm used by the adversary.
Proposition 1. Assume |S| > 2 and I(S;Y ) ≤
εH(S). Let Ŝ be an estimator of S based on the
observation Y , possibly randomized. Then

P [Ŝ(Y ) 6= S] ≥ (1− ε)H(S)− 1

log(|S| − 1)
. (3)

For |S| = 2, we have h(Pe) ≥ (1− ε)H(S).

III. ACHIEVING PRIVACY

A. Partial Knowledge of the statistics of S and X

In practice, we may not have access to the exact
joint probability distribution PS,X , but rather have
some partial knowledge of the joint statistics of S
and X . Consequently, finding the exact solution of
Optimization (2) may not be possible. This raises
the question of the design of privacy mappings under
partial statistical knowledge of the prior. We consider
the following two cases.
Case 1– Know marginal PX , unknown joint PS,X :
The optimal privacy mapping under this limited sta-
tistical knowledge is the conditional distribution min-
imizing the objective

min
PY |X

max
PS|X

I(S;Y ),
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under the same constraints as in (2).
Case 2– No information about PS,X : In the absence
of any knowledge on the statistics of S and/or X , the
optimal privacy mapping is obtained by minimizing

min
PY |X

max
PS,X

I(S;Y ),

under the same constraints as in (2).
In Section III-B, we introduce statistical inference

techniques based on maximal correlation, and prove a
separability result on the privacy guarantees. Namely,
we provide an upper bound the information leakage in
terms of I(S;X) times a maximal correlation factor
determined by the conditional distribution PY |X . This
result allows us to design privacy preserving mappings
without full knowledge of the joint distribution PS,X .

B. Privacy via Maximal correlation

As a preliminary, we give the following definition.

Definition 4. ([16]) Given a joint distribution PX,Y ,
we define S∗(X;Y ) = supQX 6=PX

D(QY ||PY )
D(QX ||PX) , where

QY is the marginal probability of Y resulting from the
joint distribution PY |XQX .

Note that S∗(X;Y ) ≤ 1 by the data processing
inequality for divergence (see [16]). We have

Theorem 1. ([17]) If S → X → Y form a Markov
chain, then I(S;Y ) ≤ S∗(X;Y )I(S;X), and the
bound is tight as we vary S. In other words, assuming
I(S;X) 6= 0, we have

sup
S:S→X→Y

I(S;Y )

I(S;X)
= S∗(X;Y ). (4)

Theorem 1 decouples the dependency of Y and S
into two terms, one relating S and X , and one relating
X and Y . Thus, one can upper bound the leakage
even without knowing PS,X . The application of this
result in our problem is the following: Assume we
are in a regime that PS,X is not known. If we do
not use any privacy mapping, then we have I(S;X)

H(S) −
divergence privacy. If we design the privacy mapping
with S∗(X;Y ) = s for some s ∈ [0, 1], then we obtain
s I(S;X)
H(S) − divergence privacy. Since we do not know

the distribution on (S,X), irrespective to the joint dis-
tribution of (S,X), we can guarantee s− divergence
privacy. Therefore, the problem becomes to find PY |X ,
minimizing the following objective function.

min
PY |X

max
PX

S∗(X;Y )

E[d(X,Y )] ≤ D. (5)

In order to study this optimization problem in more
details, we need to review some results on maximal
correlation. Maximal correlation is a measure of corre-
lation between two random variables with applications

both in information theory and computer science. We
recall its definition, and give its relation to S∗(X;Y ).

Definition 5. ([18]) Given two random variables X
and Y , the maximal correlation of (X,Y ) is

ρm(X;Y ) = max
(f(X),g(Y ))∈T

E[f(X)g(Y )], (6)

where T is the collection of pairs of real-valued ran-
dom variables f(X) and g(Y ) such that E[f(X)] =
E[g(Y )] = 0 and E[f(X)2] = E[g(Y )2] = 1.

This measure was first introduced by Hirschfeld
[18] and then studied by Rényi [19] and Ahlswede
[16]. Recently, [17], [20] studied the maximal cor-
relation and gave a geometric interpretation of this
quantity. The following is a result of [16].

max
PX

ρ2m(X;Y ) = max
PX

S∗(X;Y ). (7)

Substituting (7) in (5), the privacy preserving mapping
is the solution of

min
PY |X

max
PX

ρ2m(X;Y )

E[d(X;Y )] ≤ D. (8)

It is shown in [21] that maximal correlation, ρm(X;Y )
is characterized by the second largest singular value
of the matrix Q with entries Qx,y = P (x,y)√

P (x)P (y)
.

This optimization can be solved by power iteration
algorithm for finding singular values of a matrix.
Two quantities S∗(X;Y ) and ρ2m(X;Y ) have a close
relation with each other. Two sufficient conditions
under which S∗(X;Y ) = ρ2m(X;Y ) are given in
Theorem 7 of [16]. In particular, if the supremum in
(4) is not achievable, then ρ2m(X;Y ) = S∗(X;Y ).
Next, we give an example of such case.

Example 2. Let X ∼ Bern( 12 ) and Y = X + N
(mode 2), where N ∼ Bern(D) and X ⊥⊥ N . It
is shown in [20] that, S∗(X;Y ) = ρ2m(X;Y ) =
(1 − 2D)2. Using this bound where S ∼ Bern( 12 ),
X = S +Bern(p), and Y = X +Bern(D), we obtain
I(S;Y ) ≤ (1−2D)2(1−h(p)). Compare this to what
we showed in Example 1: I(S;Y ) = 1 − h(p ∗ D).
Here, (1− 2D)2 is the injected privacy term obtained
by the privacy mapping PY |X and 1−h(p) is the intrin-
sic information/privacy term, quantifying the relation
between X and S.

Next, we consider the case where only the marginal
distribution PX is given and we do not have access
to PS,X . We wish to design PY |X . The optimization
problem is given by

min
PY |X :E[d(X;Y )]≤D

S∗(X;Y ) (9)

Now, consider the following optimization problem by
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replacing S∗(X;Y ) by ρ2m(X;Y ).

min
PY |X :E[d(X;Y )]≤D

ρ2m(X;Y ) (10)

We solve this optimization, and if the final solution
satisfies S∗(X;Y ) = ρ2m(X;Y ), then we have the
solution to (9). In particular, if one of the conditions
given in [16] holds, then we have the solution to (9).
Next, we reformulate the constraint set in (10).

Theorem 2. Given a distribution PX , let
√
PX denote

a vector with entries equal to square root of entires of
PX . If Q is a |X |×|Y| matrix satisfying the following
constraints: 1) Q ≥ 0 (entry-wise), 2) QQt

√
PX =√

PX , then PY |X (and PX,Y ) can be found uniquely
such that Qx,y = P (x,y)√

P (x)
√
P (y)

.

By Theorem 2, Optimization (10) can be cast as

minλ2(Q)

Q : QQt
√
PX =

√
PX ,

E[d(X;Y )] ≤ D, Q ≥ 0(entry-wise), (11)

where λ2(Q) denotes the second largest singular
value of Q and expectation is over the joint prob-
ability induced by matrix Q. Note that the con-
straints are quadratic in the entries of Q. As an
example of distortion constraint, P[X = Y ] =
tr
(
D(
√
PX)QD(Qt

√
PX)

)
≥ 1−D is quadratic in Q,

where D(v) is a diagonal matrix with entries of v on
the diagonal. Once we find Q, then PY |X follows from
that. The following shows under some conditions the
optimization given in (11) is a convex optimization.

Corollary 1. For a given PX and PY , the optimization
given in (11) is a convex optimization.

IV. ADDITIVE NOISE PRIVACY MAPPINGS

Designing a privacy mapping requires characteriz-
ing pY |X for all possible pairs (x, y) ∈ X × Y , i.e.
solving the optimization over |X | |Y| variables. When
Y = X , and |X | is large, solving the optimization over
|X |2 variables may become intractable.

In this Section, we restrict our attention to the class
of additive noise mappings, i.e. Y = X + N . We
propose class-optimal privacy mappings for continu-
ous and discrete variables X . The first advantage of
additive noise mappings is their simplicity, and the
fact that their design requires solving an optimization
with a smaller number of variables, namely the noise
distribution parameter. Moreover, the design of the
optimal noise does not require full knowledge of the
priors, but only knowledge of second order moments
of X , namely the variance or covariance matrix of X .

A. Gaussian Mechanism
Consider a continuous X . We show that the optimal

additive-noise mapping, under l2-distortion, requires

only knowledge of VAR(X) (or covariance matrix for
multi-dimensional X), but not of PX .

Since S → X → Y , we have I(S;Y ) ≤ I(X;Y ).
For a given distortion, D, assume the minimum ob-
jective of the following rate distortion problem

min
PY |X :E[d(X,Y )]≤D

I(X;Y ),

is I∗. Therefore, we have I(D) ≤ I∗, where I(D) is
the minimum objective of (2). Using Theorem 1 for
Y → X → S (this follows from S → X → Y ), we
can further bound I(D). In particular, since I(S;Y ) ≤
I(X;Y )S∗(X;S), we obtain I(D) ≤ S∗(X;S)I∗.
Note that if X = f(S) is a deterministic function of
S, then I(S;Y ) = I(X;Y ) and the bound is tight
(this happens for instance in linear regression when
X = AS for some matrix A).

First, we show that among all privacy mechanisms
in this class, adding Gaussian noise is optimal. Let
X ∈ Rn. Without loss of generality, we assume
E[X] = 0. Denote the covariance matrix of X by CX .
Let Y = X+N , where N is a multi-dimensional noise
independent from X , with mean 0 and covariance
matrix CN .
Proposition 2. Assume PX is unknown in the design
of privacy mapping and we only know VAR(X) =
σ2
X for some σX . Also consider the class of privacy

preserving schemes obtained by adding independent
noise , N , to the signal, X . The noise has zero mean
and variance (`2 norm distortion) equal to σ2

N for
some σN . We show that, Gaussian noise is the best,
in the following sense:
maxPX :X⊥⊥NG, VAR(X)=σ2

X
I(X;X + NG) ≤

maxPX :X⊥⊥N, VAR(X)=σ2
X
I(X;X +N),

where NG is Gaussian with zero mean and same
variance as N . This implies that, the worst-case
information leakage using NG is not greater than
worst-case information leakage using N .

For a given CX and distortion level, D, Gaussian
mechanism is as following:

1) take the eigen-value decomposition of CX .
2) the covariance matrix of NG, CN , has eigen-

vectors aligned with the eigen-vectors of CX .
Moreover, the corresponding eigen-values of CN
are given by solving

min
σi: 1≤i≤n

n∏
i=1

σi + λi
σi

s.t.
n∑
i=1

σi ≤ D, (12)

where λis and σis (1 ≤ λi ≤ n) denote the
eigen-values of CX and CN , respectively.

3) let Y = X +NG where NG ∼ N (0, CN ). The
distortion is given by

∑n
i=1 E[(Yi − Xi)

2] =
tr(CN ) =

∑n
i=1 σi ≤ D.
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In the following theorem we prove that, the proposed
mechanism is optimal.
Theorem 3. Assuming `2-norm distortion and a dis-
tortion level, D, the covariance matrix of the optimum
noise in the Gaussian mechanism has eigen-vectors
aligned with the eigen-vectors of CX . Also, the eigen-
values are obtained by solving (12).

Optimization (12) can be solved with an approach
similar to reverse water-filling ([22, Chapter 10.3]).

Example 3. Assume X is a deterministic real-valued
function of S, X = f(S) and that, VAR(X) = σ2

X .
Because of S → X → Y , we have I(X;Y ) =
I(S;Y ). Let N ∼ N (0, σ2) and Y = X + N . For
any ε, we can achieve (ε,D)− divergence-distortion
privacy, where D =

σ2
X

e2εH(S)−1 . Note that this analysis
works only for ε > 0. Once we want to have perfect
privacy, i.e. ε = 0, then this scheme chooses σ2

N =∞.
In practice, this means that, Y is independent from X .
If we assume Y = E[X] (a deterministic value), then
I(Y ;S) = 0 and E[d(X,Y )] = VAR(X). Therefore,
For distortion level greater than or equal to VAR(X),
the deterministic mechanism that sets Y = E[X]
achieves ε = 0.

B. Discrete Noise Mechanism

In this section we consider discrete random variable,
X , where X = Z. The case were X is a finite set is
very similar. Again, we bound I(X;Y ) in order to
bound I(S;Y ). Let the the distortion measure to be
`p norm, i.e., the distortion between X and Y to be
E[|X − Y |p]

1
p for some 1 ≤ p ≤ ∞.

Definition 6. For a given 1 ≤ p ≤ ∞, among all ran-
dom variables with `p norm less than or equal to D,
denote the distribution with the maximum entropy by
P ∗p,D. Also denote the maximum entropy by H∗(p,D).

Next, we characterize P ∗p,D and its entropy.

Lemma 1. For any 1 ≤ p ≤ ∞, P ∗p,D is given by
P ∗p,D[Z = i] = AB−|i|

p

, where A and B are chosen
such that

∑∞
i=−∞AB−|i|

p

= 1 and E[|Z|p]
1
p = D.

Moreover, we have H∗(p,D) = − logA+(logB)Dp.

Proposition 3. Assume PX is unknown in the design
of privacy mapping and we only know E[|X|p]

1
p =

µX for some µX . Also consider the class of privacy
preserving schemes obtained by adding independent
noise , N , to the signal, X . The noise has zero mean
and `p norm distortion equal to µN , i.e. E[|N |p]

1
p =

µN for some µN . We show that, a noise with P ∗p,D
distribution is the best, in the following sense:
maxPX :X⊥⊥Np, E[|X|p]=µpX I(X;X + Np) ≤

maxPX :X⊥⊥N, E[|X|p]=µpX I(X;X +N),
where Np is a noise with P ∗p,D distribution and N
is a random variable such that E[Np] = E[N ] = 0

and E[|Np|p] = E[|N |p] = µpN . This implies that,
the worst-case information leakage using Np is not
greater than worst-case information leakage using N .

The discrete noise mechanism is as following:
1) For a distortion measure `p (1 ≤ p ≤ ∞) and a

distortion level, D, find P ∗p,D as in Lemma 1.
2) Let Y = X + Z, where Z ∼ P ∗p,D. We have

d(X,Y ) = E[|Y −X|p]
1
p = E[|Z|p]

1
p ≤ D.

Next, we analyze the mutual information, I(X;Y ).
Using Minkowski’s inequality, we have E[|Y |p]

1
p =

E[|X + Z|p]
1
p ≤ E[|X|p]

1
p + E[|Z|p]

1
p = µX + D.

Therefore, we obtain I(X;Y ) = H(X+Z)−H(Z) ≤
H∗(p, µX +D)−H∗(p,D).

V. PRIVACY OF MULTI-AGENT SYSTEMS

New challenges in the design of privacy preserving
mappings arise when multiple data releases to one
or several agents occur. In this section, we address
these challenges by bounding the information leakage
under collusion/composition based on the information
leakage of individual schemes. We first define the
challenges under collusion and composition.
Collusion: The private data S is correlated with both
non-private data X1 and X2. Two privacy mappings
are applied to these non-private data to produce two
distorted data, Y1 and Y2 that are then released to two
agents. We wish to analyze the cumulative privacy
guarantees on S when the agents share Y1 and Y2.
We focus on the case where the two privacy mappings
are designed in a decentralized fashion: Each privacy
mapping is designed to protect against the inference
of S from each of the released data separately.
Composition: The private data S is correlated with
the non-private data X1 and X2 through the joint
probability distribution PS,X1,X2

. Assume that we are
able to design separately two privacy mappings that
transform X1 (resp. X2) into Y1 (resp. Y2). An agent
asks for the pair (X1, X2). We wish to combine the
two separate privacy mappings mentioned previously
to generate a privacy mapping for the pair (X1, X2),
that still guarantees a certain level of privacy, without
having to design jointly from scratch the new privacy
mapping for the pair (X1, X2). Composition allows
to make the design simpler, by breaking one large
optimization with many variables into several smaller
optimizations with fewer variables.

Both collusion and composition problems can be
captured by the following setting: a private variable S
is correlated with X1 and X2. We perform two sepa-
rate privacy mappings on X1 and X2 to obtain Y1 and
Y2, respectively. PY1|X1

and PY2|X2
are designed with

given distortion levels, and the individual information
leakages are I(S;Y1) and I(S;Y2). Assume that Y1
and Y2 are combined together into a pair (Y1, Y2),
either by colluding agents, or by the privacy agent
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through composition. We want to analyze the privacy
level under this combination of information.

Lemma 2. Assume Y1, Y2, and S form a Markov
chain in any order. If the privacy preserving map-
pings leak I(Y1;S) and I(Y2;S) bits, then under
collusion/composition at most I(Y1;S) + I(Y2;S)
amount of information is leaked. In other words,
I(Y1, Y2;S) ≤ I(Y1;S) + I(Y2;S). Moreover, if
S → Y1 → Y2, then I(S;Y1, Y2) ≤ I(Y1;S). If
S → Y2 → Y1, then I(S;Y1, Y2) ≤ I(Y2;S).

Note that in general, the collusion/composition
might lead to full recovery of S. For instance, let S,
Y1, and Y2 be three Bern( 12 ) random variables such
that S = Y1 ⊕ Y2 and Y1 ⊥⊥ Y2. Then, we have
I(Y1;S) = I(Y2;S) = 0, whereas I(Y1, Y2;S) =
1 bit and S is fully recoverable from (Y1, Y2). Another
example is when Y1 = S+N where N is some noise
and Y2 = S −N . We can fully recover S = Y1+Y2

2 .
Next, we use the results on maximal correlation to

upper bound the amount of information leakage in the
presence of collusion/composition.
Theorem 4. Let PY1|X1

and PY2|X2
be designed

separately, i.e., PY1,Y2|X1,X2
= PY1|X1

PY2|X2
.

Let λ = max{S∗(X1;Y1), S
∗(X2;Y2)}. If

I(Y1;Y2) ≥ λI(X1;X2), then we have I(S;Y1, Y2) ≤
I(S;X1, X2)max{S∗(X1;Y1), S

∗(X2;Y2)}.

Therefore, if both mappings are designed sepa-
rately with small maximal correlation, then after col-
lusion/composition we can bound the amount of infor-
mation leakage.
Corollary 2. In collusion or composition, assume that
we wanted to guarantee ε−divergence privacy after
combination of information. We design both mappings
such that both of the corresponding maximal correla-
tions to the mappings are bounded by ε. Thus, using
Theorem 4, we have I(S;Y1, Y2) ≤ εI(S;X1, X1) ≤
εH(S). Therefore, both of the individual mappings are
ε−divergence private and after collusion/composition
we still have a ε−divergence private setting.

Note 1. Assume we have two private random variables
S1 and S2 each of them correlated with X1 and X2,
respectively. We distort X1 and X2 to obtain Y1 and
Y2, respectively. An agent has access to Y1 and Y2 and
wishes to discover (S1, S2). Similarly, we can show
that:

if PY1|X1
and PY2|X2

be designed separately,
i.e., PY1,Y2|X1,X2

= PY1|X1
PY2|X2

. Let
λ = max{S∗(X1;Y1), S

∗(X2;Y2)}. If
I(Y1;Y2) ≥ λI(X1;X2), then we obtain
I(S1, S2;Y1, Y2) ≤

I(S1, S2;X1, X2)max{S∗(X1;Y1), S
∗(X2;Y2)}.

VI. COMPARISON OF PRIVACY METRICS

In this section, we compare the existing privacy
measures in the literature. In particular, we compare

divergence privacy and differential privacy and show
that, while divergence privacy guarantees a small
probability of inferring private random variable based
on the released data (Proposition 1), differential pri-
vacy fails to guarantee. Let S = (S1, . . . , Sn) and
S → X → Y . Next, we give the notions of privacy in
the literature and compare them.

Definition 7. • Differential privacy([4]): For a
given ε, PY |S is ε− differentially private if
supy,s,s′: s∼s′

P (y∈A|s)
P (y∈A|s′) ≤ eε, for any measur-

able set A, where s ∼ s′ denote neighboring. The
notion of neighboring can have multiple defini-
tions, e.g. Hamming distance 1 (differ in a single
coordinate), or `p distance below a threshold. In
this paper, we use the former definition.

• Strong differential privacy([23]): For a given
ε, PY |S is ε−strongly differential private if
supy,s,s′

P (y∈A|s)
P (y∈A|s′) ≤ eε, for any measurable set

A and s and s′. This definition is related to
local differential privacy ([23]). This is stronger
than differential privacy, because we relaxed the
neighboring assumption.

• Information privacy ([1]): For a given ε, PY |S
is ε−information private if e−ε ≤ P (s∈B|y∈A)

P (s∈B) ≤
eε, for any measurable sets A and B.

• Worst-case divergence privacy: For a given
ε, PY |S is worst-case ε−divergence private if
H(S)−minyH(S|Y = y) = εH(S)

• (ε, δ)-differential privacy([24]): For any given
ε and δ, PY |S is (ε, δ)− differentially private
if P (y ∈ A|s) ≤ P (y ∈ A|s′)eε + δ, for any
measurable set A and neighboring s and s′.

Next, we compare the definitions given above.

Proposition 4. We have the following relation between
the privacy metrics.

1) ε− strong differential privacy⇒ ε− information
privacy

2) ε− information privacy ⇒ 2ε− strong differen-
tial privacy

3) ε− information privacy ⇒ ε
H(S)− worst-case

divergence privacy
4) ε

H(S)− worst-case divergence privacy ⇒
ε

H(S)− divergence privacy
5) ε− differential privacy ⇒ (ε, δ)− differential

privacy for any δ ≥ 0.

In the sequel, we give two examples comparing
differential privacy with divergence privacy. In the first
example, we focus on the probability of recovering
the private data given that we satisfy these notions of
privacy. In the second example we show the difference
between the Gaussian mechanisms tailored to (ε, δ)−
differential privacy and divergence privacy.

In the next example we consider the particular case
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of counting query. This example is partially studied
in [1]. We show that, using differential privacy, full
detection of the private data is possible. On the other
hand, using divergence privacy, the probability of
detecting the private data is small.
Example 4. Let S1, . . . , Sn be binary correlated
random variables and let X =

∑n
i=1 Si. Assume

S1, . . . , Sn are correlated in a way that, S1 ≥ · · · ≥
Sn. Therefore, knowing X , we can exactly recover
S = (S1, . . . , Sn). Also, assume Sis (1 ≤ i ≤ n)
are correlated in a way that P (X = ki) = 1

1+n/k , for
i ∈ {0, 1, . . . , n/k} (assume, n = 0 mode k). P (Y |S)
is ε− differentially private if we add Laplacian noise
to X , i.e., Y = X + Lap( 1ε ) ([4]). Fix ε and let
n = kk, where k goes to infinity. It is shown that error
probability in detecting X (and S) is approximately
Pe = e

−kε
2 ([1]), which is very small for large enough

k. Thus, differential privacy does not guarantee a small
probability of detecting S. Note that, the divergence
privacy factor is approximately I(S;Y )

H(S) = 1 − e
−kε
2 ,

which is very close to one and this is the reason for
large detection probability. Now, consider Gaussian
mechanism, where we add Gaussian noise instead of
Laplacian noise. In this scheme, the variance of the
Gaussian noise depends on the correlation in the data
S via the variance of X , σ2

X . We have σ2
X ≈ 1

12k
2k,

where ≈ denotes that, the ratio goes to 1 as k goes
to infinity. Let N be a Gaussian distribution with
a variance satisfying: σ2

X

σ2
N
≈ k2ε(k−1). Adding this

noise to X , the leakage factor is less than or equal
to ε. Moreover, Pe ≥ (1−ε) log(1+n/k)

logn

k→∞→ 1 − ε.
The reason for this large error probability is mainly:
using Gaussian mechanism, we partially take into
consideration the prior correlation of S, by using σ2

X

in the design of noise.

(ε, δ)−differential privacy metric can be achieved
by adding Gaussian noise to the signal, X ([24]). In
the next example we compare the mechanism given in
[24] with our Gaussian mechanism.
Example 5. It is shown that, by adding Gaussian
noise with variance σ2 ≥ 1

ε2 2 log(2/δ) we can achieve
(ε, δ)−differential privacy ([24]). This scheme results
in a distortion D ≥ 1

ε2 2 log(2/δ) and the leakage of
information L ≤ 1

2 log
(
1 +

σ2
X

1
ε2

2 log(2/δ)

)
. A qualita-

tive way for comparison is to state that: Using (ε, δ)
differential privacy Gaussian mechanism, we would
require a large distortion to achieve a small leakage.
On the other hand, using a divergence privacy Gaus-
sian mechanism given in IV-A, a scheme that leaks L
bits with minimum distortion, D, achieves any (ε, δ)−
differential privacy, where 1

ε2 2 log(
2
δ ) =

σ2
X

e2L−1 .
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