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Abstract. We study algorithms for computing the convolution of a pri-
vate input x with a public input h, while satisfying the guarantees of
(ε, δ)-differential privacy. Convolution is a fundamental operation, in-
timately related to Fourier Transforms. In our setting, the private in-
put may represent a time series of sensitive events or a histogram of
a database of confidential personal information. Convolution then cap-
tures important primitives including linear filtering, which is an essential
tool in time series analysis, and aggregation queries on projections of the
data. We give an algorithm for computing convolutions which satisfies
(ε, δ)-differentially privacy and is nearly optimal for every public h, i.e. is
instance optimal with respect to the public input. We prove optimality
via spectral lower bounds on the hereditary discrepancy of convolution
matrices. Our algorithm is very efficient – it is essentially no more com-
putationally expensive than a Fast Fourier Transform. 3

1 Introduction

Much useful data contains sensitive information about individuals (or the ac-
tions they take): typical examples are census data, data from medical studies,
and financial data. While analyzing such sensitive datasets is valuable for sci-
entific studies, policy and decision making, care must be taken to protect the
privacy of the individuals represented in the data. Simple measures such as re-
moving personally identifying attributes, replacing names with pseudonyms and
publishing only aggregate statistics have proved inadequate protection from so-
phisticated linkage attacks [27,25,26]. An extreme solution would be to remove
all sensitive information from the datasets, but this approach can destroy the
utility of the data: a medical study without disease incidence rates would be use-
less, for example. In recent years differential privacy [10] has become a standard
framework in which to reason about trade offs between privacy and utility, and
this is the framework we adopt in this paper.

We study the noise complexity of a special class of queries. Consider a
database representing users of N different types, or a time series of events that
occurred over N time steps. We may encode the database as a vector x indexed
by {1, . . . , N}, where xi gives the number of users of type i, in the database
example, or xi is the count of events that occurred at time step i. We say that

3 The full version of this paper can be found at http://arxiv.org/abs/1301.6447
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two such vectors x and x′ are neighbors when ‖x − x′‖1 ≤ 1. Neighboring in-
put vectors correspond to databases that differ in at most a single user/event.
Informally, an algorithm is differentially private if its output distribution is al-
most identical for neighboring inputs. More precisely, a randomized algorithm
A satisfies (ε, δ)-differential privacy if for all neighbors x,x′ ∈ [0, 1]n, and all
measurable subsets T of the range of A, we have

Pr[A(x) ∈ T ] ≤ eεPr[A(x′) ∈ T ] + δ,

where probabilities are taken over the randomness of A.

In this work we are interested in workloads of M linear queries, given as
a matrix A; the intended output for the workload is Ax. Differential privacy
necessitates randomization and approximation for all non-trivial workloads; we
discuss accuracy in terms of mean squared error (MSE) as a measure of approx-
imation: the expected average of squared error over all M queries. The MSE
achieved by an algorithm is the worst MSE the algorithm achieves on any input
database.

The queries in a workload A can have different degrees of correlation, and
this poses different challenges for the private approximation algorithm. In one ex-
treme, whenA is a set of Ω(N) independently sampled random {0, 1} (i.e. count-
ing) queries differentially private algorithm needs to incur at least Ω(N) squared
error per query on average [9]. On the other hand, ifA consists of the same count-
ing query repeatedM times, we only need to addO(1) noise per query [10]. While
these two extremes are well understood, relatively less is known about workloads
of queries with some, but not perfect, correlation.

The convolution4 y = x ∗ y of the private input sequence x with a public
sequence h is defined as

yi =

N−1
∑

j=0

hjxi−j mod N .

If we view the input sequence as a vector x, and define the circulant convolution
matrix H = (hN+j−i mod N )i,j∈{0,...,N−1}, we see the convolution map is equiv-
alent to computing the N linear queries Hx. Each query is a circular shift of
the previous one, and, therefore, the queries are far from independent but not
identical either. Convolution is a fundamental operation that arises in algebraic
computations such as polynomial multiplication, in signal analysis, and has well
known connection to Fourier transforms. Of primary interest to us, it is a natural
primitive in various applications:

– linear filters in the analysis of time series data can be cast as convolutions; as
example applications, linear filtering can be used to isolate cycle components
in time series data from spurious variations, and to compute time-decayed
statistics of the data;

4 Here we define circular convolution, but, as discussed in the paper, our results gen-
eralize to other types of convolution, which are defined similarly.
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– when user type in the database is specified by d binary attributes, aggre-
gate queries such as k-wise marginals and generalizations to other predicate
queries can be represented as convolutions.

Privacy concerns arise naturally in these applications: the time series data can
contain records of sensitive events, such as financial transactions, records of user
activity, etc.; some of the attributes in a database can be sensitive, for example
when dealing with databases of medical data.

We give the first (ε, δ)-differentially private algorithm which is nearly query-
optimal: it achieves MSE which is not much smaller than the smallest MSE that
any (ε, δ)-differentially private algorithm can achieve on the given convolution
query.5

To prove the optimality of our algorithm, we need to prove optimal lower
bounds on the noise complexity of private algorithms for computing convolu-
tions. We use the recent discrepancy-based noise lower bounds of Muthukrish-
nan and Nikolov [24]. We use a characterization of combinatorial discrepancy
in terms of determinants of submatrices discovered by Lovász, Spencer, and
Vesztergombi [23], together with ideas by Hardt and Talwar [18]. A main tech-
nical ingredient in the proof of our lower bound is a connection between the
discrepancy of a matrix A and the discrepancy of PA where P is an orthogonal
projection operator.

Related work. The problem of computing private convolutions has not been
considered in the literature before. However, there is a fair amount of work on
the more general problem of computing arbitrary linear queries, as well as some
work on special cases of convolution maps.

Bolot et al. [4] give algorithms for various decayed sum queries: window sums,
exponentially and polynomially decayed sums. Any decayed sum function is a
type of linear filter, and, therefore, a special case of convolution. Thus, our cur-
rent work gives a nearly optimal (ε, δ)-differentially private approximation for
any decayed sum function. Moreover, as far as mean squared error is concerned,
our algorithms give improved error bounds for the window sums problem: con-
stant squared error per query. However, unlike [4], we only consider the offline
batch-processing setting, as opposed to the online continual observation setting.

The work of Barak et al. [1] on computing k-wise marginals concerns a re-
stricted class of convolutions (see Section 5). Moreover, Kasiviswanathan [19]
show a noise lower bound for k-wise marginals which is tight in the worst case.
Our work is a generalization: we are able to give nearly optimal approximations
to a wider class of queries, and our lower and upper bounds nearly match for
any convolution.

Li and Miklau [21,22] proposed the class of extended matrix mechanisms,
building on prior work on the matrix mechanism [20], and showed how to effi-
ciently compute the optimal mechanism from the class. Since our mechanism is
a special instance of the extended matrix mechanism, the algorithms of Li and

5 We note that while our algorithm is instance optimal with respect to queries, the
measure of error we use is still worst-case over databases.

3



Miklau have at most as much error as our algorithm. They also derived a spectral
lower bound [22] on the extended matrix mechanism; their results further imply
that the spectral lower bound is tight for the extended mechanism for workloads
corresponding to convolutions. However, unlike our lower bounds, this has no
direct implication for private algorithms which are not an instantiation of the
matrix mechanism.

Independently and concurrently with our work, Cormode et al. [8] considered
adding optimal non-uniform noise to a fixed transform of the private database.
Similarly to [8], we gain significantly in efficiency over the general extended ma-
trix mechanism by fixing a specific transform (in our case the Fourier transform)
of the data and computing a closed form expression for the optimal noise magni-
tudes. Our lower bounds show that, somewhat surprisingly, this simplification of
Cormode et al. in fact comes without loss of generality for any set of convolution
queries.

In the setting of (ǫ, 0)-differential privacy, [18,2] prove nearly optimal upper
and lower bounds on approximating Ax for any matrix A. Prior to our work
a similar result was not known for the weaker notion of approximate privacy,
i.e. (ε, δ)-differential privacy. After a preliminary version of this paper was made
available, our results were generalized by Nikolov, Talwar, and Zhang [28] to
give nearly optimal algorithms for computing any linear map A under (ε, δ)-
differential privacy. However, this comes at the cost of higher computational
complexity: even the algorithm from [28], which is more efficient than the al-
gorithms from [18,2], has running time Ω(N3), as it needs to approximate the
minimum enclosing ellipsoid of an N -dimensional convex body. By contrast our
algorithm’s running time is dominated by the running time of the Fast Fourier
Transform, i.e. O(N logN), making it suitable for practical applications.

A related line of research exploits sparsity assumptions on the private database
in order to reduce error [3,11,16,28]. Using techniques from learning theory,
more efficient algorithms for sparse databases have been designed for the set
of marginal queries [15,17,7,29,6]. As we do not limit the database size, our re-
sults are not directly comparable. Also, our lower bounds already hold when the
database size (which in our notation corresponds to ‖x‖1) is at least the num-
ber of linear queries, and in that regime our algorithm is nearly optimal, and
cannot be significantly improved in terms of noise complexity. Finally, note that
the optimal error for a subset of all marginal queries may be less than linear
in database size, and our algorithms will give near optimal error for the specific
subset of interest.

Recent work [17,7,29] on privately answering marginal queries has taken the
approach of treating the database as a function from queries to the reals, and
approximating this function by a small degree polynomial. This technique bears
some resemblance to our approach for generalized marginals: we compute the
Fourier transform of the database privately and spend most of the privacy budget
on lower order Fourier coefficients, since they carry the most information.

Organization. We begin with preliminaries on differential privacy and con-
volution operators. In section 3 we derive our main lower bound result, and in
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section 4 we describe and analyze our nearly optimal algorithm. In section 5 we
describe applications of our main results.

2 Preliminaries

Notation: N, R, and C are the sets of non-negative integers, real, and complex
numbers respectively. By log we denote the logarithm in base 2 while by ln we
denote the logarithm in base e. Matrices and vectors are represented by boldface
upper and lower cases, respectively. AT , A∗, AH stand for the transpose, the
conjugate and the transpose conjugate of A, respectively. The trace and the
determinant ofA are respectively denoted by tr(A) and det(A). Am: denotes the
m-th row of matrix A, and A:n its n-th column. A|S , where A is a matrix with
N columns and S ⊆ [N ], denotes the submatrix of A consisting of those columns
corresponding to elements of S. λA(1), . . . , λA(n) represent the eigenvalues of
an n × n matrix A. IN is the identity matrix of size N . E[·] is the statistical
expectation operator. Lap(x, s) denotes the Laplace distribution centered at x
with scale s, i.e. the distribution of the random variable x + η where η has
probability density function p(y) ∝ exp(−|y|/s).

2.1 Fourier Eigen-decomposition of Convolution

In this section, we recall the definition of the Fourier basis, and the eigen-
decomposition of circular convolution in this basis.

Definition 1. The normalized Discrete Fourier Transform (DFT) matrix of
size N is defined as

FN =

(

1√
N

exp

(

− j2π m n

N

))

m,n∈{0,...,N−1}

. (1)

Note that FN is symmetric (FN = FT
N ) and unitary (FNFH

N = FH
NFN = IN ).

We denote by fm = N−1/2(1, e
j2π m

N , . . . , e
j2π m (N−1)

N )T ∈ CN the m-th column
of the inverse DFT matrix FH

N . Or alternatively, fHm is the m-th row of FN . The

normalized DFT of a vector h is simply given by ĥ = FNh.

Theorem 1 ([14]). Any circulant matrix H can be diagonalized in the Fourier
basis FN : the eigenvectors of H are given by the columns (fm)m∈{0,...,N−1} of
the inverse DFT matrix FH

N , and the associated eigenvalues {λm}m∈{0,...,N−1}

are given by
√
N ĥ, i.e. by the DFT of the first column h of H:

∀m ∈ {0, . . . , N − 1}, Hfm = λmfm

where λm =
√
Nĥm =

N−1
∑

n=0

hne
− j2π m n

N .

Equivalently, in the Fourier domain, the circular convolution matrix H becomes
a diagonal matrix Ĥ = diag{

√
N ĥ}.
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Corollary 1 Consider the circular convolution y = Hx of x and y. Let x̂ =
FNx and ĥ = FNh denote the normalized DFT of x and h. In the Fourier
domain, the circular convolution becomes a simple entry-wise multiplication of
the components of

√
N ĥ with the components of x̂: ŷ = FN y = Ĥ x̂.

2.2 Accuracy

Definition 2. Given a vector h ∈ RN which defines a convolution matrix H,
the mean (expected) squared error (MSE) of an algorithm A is defined as

MSE = sup
x∈RN

1

N
E[‖A(x)−Hx‖22].

Note that MSE measures the mean expected squared error per output compo-
nent. Note further that MSE is a function of both the algorithm and the public
convolution matrix, but is defined to be worst-case over private inputs.

3 Lower Bounds

In this section we derive a spectral lower bound on mean squared error of dif-
ferentially private approximation algorithms for circular convolution. We prove
that this bound is nearly tight for every fixed h in the Section 4. The lower
bound is stated as Theorem 2.

Theorem 2. Let h ∈ R
N be an arbitrary real vector and let us relabel the

Fourier coefficients of h so that |ĥ0| ≥ . . . ≥ |ĥN−1|. For all sufficiently small ε
and δ, the expected mean squared error MSE of any (ε, δ)-differentially private
algorithm A that approximates h ∗ x is at least

MSE = Ω

(

N
max
K=1

K2ĥ2
K−1

N log2 N

)

. (2)

For the remainder of the paper, we define the notation specLB(h) for the right

hand side of (2), i.e. specLB(h) = maxNK=1
K2ĥ2

K−1

N log2 N
.

3.1 Discrepancy Preliminaries

We define (ℓ2) hereditary discrepancy as

herdisc(A) = max
W⊆[N ]

min
v∈{−1,+1}W

‖Av‖2.

The following result connects discrepancy and differential privacy:

Theorem 3 ([24]). Let A be an M ×N complex matrix and let A be an (ε, δ)-
differentially private algorithm for sufficiently small constant ε and δ. There
exists a constant C and a vector x ∈ {0, 1}N such that E[‖A(x) − Ax‖22] ≥
C herdisc(A)2

log2 N
.
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The determinant lower bound for hereditary discrepancy due to Lovász,
Spencer, and Vesztergombi gives us a spectral lower bound on the noise required
for privacy.

Theorem 4 ([23]). There exists a constant C′ such that for any complex M ×
N matrix A, herdisc(A) ≥ C′ maxK,B

√
K| det(B)|1/K , where K ranges over

[min{M,N}] and B ranges over K ×K submatrices of A.

Corollary 1. Let A be an M × N complex matrix and let A be an (ε, δ)-
differentially private algorithm for sufficiently small constant ε and δ. There
exists a constant C and a vector x ∈ {0, 1}N such that, for any K ×K subma-

trix B of A, E[‖A(x)−Ax‖22] ≥ CK| det(B)|2/K

log2 N
.

3.2 Proof of Theorem 2

We exploit the power of the determinant lower bound of Corollary 1 by combining
the simple but very useful observation that projections do not increase mean
squared error with a lower bound on the maximum determinant of a submatrices
of a rectangular matrix. We present these two ingredients in sequence and finish
the section with a proof of Theorem 2.

Lemma 1. Let A be an M×N complex matrix and let A be an (ε, δ)-differentially
private algorithm for sufficiently small constant ε and δ. There exists a constant
C and a vector x ∈ {0, 1}N such that for any L ×M projection matrix P and

for any K ×K submatrix B of PA, E[‖A(x)−Ax‖22] ≥ CK| det(B)|2/K

log2 N
.

The proof of the lemma is based on the observation that A can be used to
answer linear queries Bx by computing y = A(x) and outputting (a subset of
the coordinates of) Px. The MSE of this new mechanism is no larger than the
error of A. Details can be found in the full version of the paper.

Our main technical tool is a linear algebraic fact connecting the determinant
lower bound for A and the determinant lower bound for any projection of A.

Lemma 2. Let A be an M ×N complex matrix with singular values λ1 ≥ . . . ≥
λN and let P be a projection matrix onto the span of the left singular vectors
corresponding to λ1, . . . , λK . There exists a constant C and K ×K submatrix B
of PA such that

| det(B)|1/K ≥ C

√

K

N

(

K
∏

i=1

λi

)1/K

Proof. Let C = PA and consider the matrix D = CCH . It has eigenvalues
λ2
1, . . . , λ

2
K , and therefore det(D) =

∏K
i=1 λ

2
i . On the other hand, by the Binet-

Cauchy formula for the determinant, we have

det(D) = det(CCH) =
∑

S∈([N ]
K )

det(C|S)2 ≤
(

N

K

)

max
S∈([N ]

K )
det(C|S)2.
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Rearranging and raising to the power 1/2K, we get that there exists a K ×K

submatrix of C such that | det(B)|1/K ≥
(

N
K

)−1/2K
(

∏K
i=1 λi

)1/K

. Using the

bound
(

N
K

)

≤
(

Ne
K

)K
completes the proof.

We can now prove our main lower bound theorem by combining Lemma 1
and Lemma 2.

Proof (of Theorem 2). As usual, we will express h ∗ x as the linear map Hx,
where H is the convolution matrix for h. By Lemma 1, it suffices to show that
for each K, there exists a projection matrix P and a K × K submatrix B of
PH such that | det(B)|1/K ≥ Ω(

√
K|ĥK |). Recall that the eigenvalues of H are√

Nĥ0, . . . ,
√
NĥN−1, and, therefore, the i-th singular value of H is

√
N |ĥi−1|.

By Lemma 2, there exists a constant C, a projection matrix P , and a submatrix
B of PH such that

| det(B)|1/K ≥ C

√

K

N

(

K−1
∏

i=0

√
N |ĥi|

)1/K

≥ C
√
K|ĥK |.

This completes the proof.

4 Upper Bounds

Next we describe an algorithm which is nearly optimal for (ε, δ)-differential pri-
vacy. This algorithm is derived by formulating the error of a natural class of
private algorithms as a convex program and finding a closed form solution. The
class of private algorithms we consider is those which add independent Gaussian
noise to the Fourier coefficients of the private input x. This is a special case of
the extended matrix mechanism [21]; working with a less general algorithm is
what allows us to derive a closed form for the optimal algorithm. At the same
time, the error of our algorithm matches the lower bound on extended matrix
mechanisms from [22].

Consider the class of algorithms, which first add independent Laplacian noise
variables zi = Lap(0, bi) to the Fourier coefficients x̂i to compute x̃i = x̂i + zi,

and then output ỹ = FH
NĤx̃. This class of algorithms is parameterized by the

vector b = (b0, . . . , bN−1); a member of the class will be denoted A(b) in the
sequel. The question we address is: For given ε, δ > 0, how should the noise
parameters b be chosen such that the algorithm A(b) achieves (ε, δ)-differential
privacy in x for ℓ1 neighbors, while minimizing the mean squared error MSE?
It turns out that by convex programming duality we can derive a closed form
expression for the optimal b, and moreover, the optimal A(b) is nearly optimal
among all (ε, δ)-differentially private algorithms. The optimal parameters are
used in Algorithm 1.
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Algorithm 1 Fourier Mechanism

Set γ = 2 ln(1/δ)‖ĥ‖1
ε2N

Compute x̂ = FNx and ĥ = FNx.
for all i ∈ {0, . . . , N − 1} do

if |ĥi| > 0 then

Set zi = Lap

(

√

γ

|ĥi|

)

else if |ĥi| = 0 then
Set zi = 0

end if
Set x̃i = x̂i + zi.
Set ȳi =

√
Nĥix̃i.

end for
Output ỹ = FH

N ȳ

Theorem 5. Algorithm 1 satisfies (ε, δ)-differential privacy, and achieves ex-
pected mean squared error

MSE = 4
ln(1/δ)

ε2N
‖ĥ‖21. (3)

Moreover, Algorithm 1 runs in time O(N logN).

The proof of Theorem 5 is omitted from the current version of the paper.
Next, we show that it implies that Algorithm 1 is almost optimal for any given
h.

Theorem 6. For any h, Algorithm 1 satisfies (ε, δ)-differential privacy and

achieves expected mean squared error O
(

specLB(h) log
2 N log2 |I| ln(1/δ)

ε2

)

.

Proof. Assume that |ĥ0| > |ĥ1| > . . . > |ĥN−1|. Then, by definition of I = {0 ≤
i ≤ N − 1 : |ĥi| > 0}, we have |ĥj | = 0, for all j > |I| − 1. Thus,

‖ĥ‖1 =
|I|−1
∑

i=0

|ĥi| =
|I|
∑

i=1

1

i
i|ĥi−1| ≤





|I|
∑

i=1

1

i





√
N logN

√

specLB(h)

= H|I|

√
N logN

√

specLB(h), (4)

where Hm =
∑m

i=1
1
i denotes the m-th harmonic number. Recalling that Hm =

O(logm), and combining the bound (4) with the expression of the MSE (3)
yields the desired bound.

5 Generalizations and Applications

In this section we describe some generalizations and applications of our lower
bounds and algorithms for private convolution. Next we sketch applications to
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computing running sums, and linear filters motivated by analysis of time series
data. Applications to computing compressible convolution maps, and comput-
ing generalized marginals on data cubes (which are an example of compressible
convolutions) are described in the full version of the paper.

5.1 Running Sum

Running sums can be defined as the circular convolution x′ ∗ h of the se-
quences h = (1, . . . , 1, 0, . . . , 0), where there are N ones and N zeros, and
x′ = (x, 0, . . . , 0), where the private input x is padded with N zeros. An ele-

mentary computation reveals that ĥ1 =
√
N and ĥi = O(N−1/2) for all i > 1.

By Theorem 5, Algorithm 1 computes running sums with mean squared error
O(1) (ignoring dependence on ǫ and δ), improving on the bounds of [5,12,30] in
the mean squared error regime.

5.2 Linear Filters in Time Series Analysis

Linear filtering is a fundamental tool in analysis of time-series data. A time series
is modeled as a sequence x = (xt)

∞
t=−∞, supported on a finite set of time steps.

A filter converts the time series into another time series. A linear filter does so by
computing the convolution of x with a series of filter coefficients w, i.e. computing
yt =

∑∞
i=−∞ wixt−i. For a finitely supported x, y can be computed using circular

convolution by restricting x to its support set and padding with zeros on both
sides.

We consider the case where x is a time series of sensitive events. Each element
xi is a count of events or sum of values of individual transactions that have
occurred at time step i. When we deal with values of transactions, we assume that
individual transactions have much smaller value than the total. We emphasize
that the definition of differential privacy with respect to x defined this way
corresponds to event-level privacy.

We consider applications to financial analysis, but our methods are applicable
to other instances of time series data, e.g. we may also consider network traffic
logs or a time series of movie ratings on an online movie streaming service. We
can perform almost optimal differentially private linear filtering by casting the
filter as a circular convolution. For more references and detailed description, we
refer the reader to the full version of our paper and the book of Gençan, Selçuk,
and Whitcher [13].

6 Conclusion

We derive nearly tight upper and lower bounds on the error of (ε, δ)-differentially
private algorithms for computing convolutions. Our lower bounds rely on recent
general lower bounds based on discrepancy theory and elementary linear alge-
bra; our upper bound is a simple computationally efficient algorithm. We also
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sketch several applications of private convolutions, in time series analysis and in
computing generalizes marginal queries on a d-attribute database.

Since our algorithm for computing convolutions has running timeO(N logN),
we conjecture that there exists an Õ(Nn) time algorithm for computing convolu-
tions with optimal error when the database size is at most n. This would improve
on the more general algorithm from [28], which has running time O(M2Nn).
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