
On the Non-Coherent Wideband Multipath Fading
Relay Channel
Nadia Fawaz, Muriel Médard

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
Email: {nfawaz,medard}@mit.edu

Abstract—We investigate the multipath fading relay channel
in the limit of a large bandwidth, and in the non-coherent
setting, where the channel state is unknown to all terminals,
including the relay and the destination. We propose a hypergraph
model of the wideband multipath fading relay channel, and show
that its min-cut is achieved by a non-coherent peaky frequency
binning scheme. The so-obtained lower bound on the capacity
of the wideband multipath fading relay channel turns out to
coincide with the block-Markov lower bound on the capacity
of the wideband frequency-division Gaussian (FD-AWGN) relay
channel. In certain cases, this achievable rate also meets the
cut-set upper-bound, and thus reaches the capacity of the non-
coherent wideband multipath fading relay channel.

I. INTRODUCTION

The general relay channel is among the smallest building
blocks of communication networks, yet its capacity is still an
open problem. Bounds on the capacity of the general relay
channel, and the capacity of some particular classes of relay
channels, have been derived in the past [1]. In particular in
[2], the expression of the cut-set upper bound from [1], and
the generalized block-Markov lower bound were derived for
the case of the frequency-division additive white Gaussian
noise (FD-AWGN) relay channel, where the source and the
relay transmit in different bands. However, despite a plethora
of recent works proposing cooperative strategies for wireless
relaying networks and studying their performance in the high
SNR regime, the capacity of the multipath fading relay channel
remains unknown. Specifically, few works [3] analyzed the
fading relay channel in the low SNR regime.

This paper focuses on analyzing the multipath fading relay
channel in the non-coherent setting, where neither the source,
nor the relay, nor the destination have channel state informa-
tion (CSI), and in the wideband regime, alternatively named
low SNR regime. Indeed, in the wideband regime, power is
shared among a large number of degrees of freedom, making
the SNR per degree of freedom low. Thus the wideband
regime is power limited, but not interference limited on the
contrary to the high SNR regime. In the wideband regime,
the capacity of the point-to-point AWGN channel [4] and the
capacity of the point-to-point non-coherent multipath fading
channel [5] were shown to be both equal to the received SNR:
CFading = CAWGN = P

N0

= limW→∞ W log(1 + P
WN0

).
Moreover, in the wideband limit of fading channels, spread-
spectrum signals were shown to achieve poor performance,
whereas peaky signals in time and frequency, such as low duty-
cycle FSK, along with non-coherent detection, were shown

to be capacity optimal [6]. The capacity of the point-to-
point multiple input multiple output (MIMO) channel in the
wideband limit was addressed in [7]. In particular, for the
SIMO channel with two receive antennas with respective gains
1 and a2, the capacity is CSIMO = (1 + a2) P

N0

. Results
on multiple user channels in the wideband limit include, the
capacity region of the AWGN Broadcast Channel (BC) [8], for
which time-sharing was shown to be optimal, and the capacity
region of the AWGN Multiple Access Channel (MAC) [9], for
which FDMA allows all sources to achieve their point-to-point
interference-free capacity to the destination.

Some observations can be drawn from previous works on
point-to-point and multiple user channels in the wideband
regime: the capacity in the multipath fading case is the same
as in the AWGN case, it can be reached in a non-coherent
setting, and interference is not an issue. Coming back to the
non-coherent multipath fading relay channel in the wideband
regime, two questions naturally arise

• Can the FD-AWGN lower bound [2] be achieved in the
non-coherent multipath fading case?

• Can the cut-set upper-bound [1] be reached?

Note that in the wideband regime, considering the FD channel
is relevant and meets the relay half-duplex constraint. This pa-
per addresses these questions through three main contributions:

1) A hypergraph model of the wideband multipath fading
relay channel is proposed.

2) The hypergraph min-cut is shown to be achieved in the
non-coherent wideband multipath fading relay channel
by a peaky frequency-binning scheme.

3) The hypergraph min-cut is shown to coincide with the
generalized block-Markov lower bound on the capacity
of the wideband FD-AWGN relay channel, and in certain
channel configurations with the cut-set upper-bound, in
which case it is equal to capacity.

The rest of the paper is organized as follows. In Section
II, the hypergraph model of the wideband multipath fading
relay channel is described, and the achievable hypergraph
min-cut is compared with bounds on the capacity of the
wideband FD-AWGN relay channel. The non-coherent scheme
achieving the hypegraph min-cut is described in Section III,
while its correspondence with the hypegraph model is detailed
in Section IV, leading to the concluding Section V.
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Fig. 1. Wideband fading relay channel

II. SYSTEM MODEL AND MAIN RESULTS

Notations: N and R denote the sets of non-negative in-
tegers, and real numbers, respectively. Let m ∈ N, the
set of non-negative integers less or equal to m is denoted
Nm � {0, . . . ,m}. The subset [0,+∞[ of R is denoted
by R

+. Let x ∈ R, (x)+ � max{0, x}. Let S be a set,
the indicator function is defined by 1S(x) = 1 if x ∈ S,
1S(x) = 0 if x /∈ S. Pr{A} is the probability of event A, E[·]
is the statistical expectation operator, and X is CN (μ, σ2)
means that X is a circularly symmetric complex Gaussian
random variable with mean μ and variance σ2.

A. Wideband multipath fading relay channel

Consider the three-node network in Figure 1(a), where the
source S, the relay R and the destination D are equipped with a
single antenna. Source and relay are assumed to have average
power constraints in the time-continuous channel model of PS

and PR = γPS Joules/s respectively. We assume that S, R and
D have no channel state information (CSI), thus the multipath
channel is considered in the non-coherent regime. In order to
respect the half-duplex constraint at the relay, we assume that
S and R transmit in two different frequency bands of respective
width WS and WR. During each temporal block of duration
T , S transmits a new codeword which R and D receive in the
first frequency band; R performs some transformation on the
signal received from S in the previous block and relays it to
D in the second frequency band; D decodes a new codeword
by processing the signals it received from S and R.

As in [6] the continuous-time multipath fading channel be-
tween transmitter u ∈ {S,R} and receiver v ∈ {R,D} is rep-
resented by the impulse response hvu(t) =

∑Lvu

l=1 avu,l(t)δ(t−
dvu,l(t)), where Lvu is the number of paths, and avu,l(t) and
dvu,l(t) are the gain and delay of path l at time t. For the sake
of simplicity, we assume that all channels hvu, u ∈ {S,R},
v ∈ {R,D} have similar coherence-time Tc and delay-
spread Td. Moreover we consider a block-fading model where
the processes {avu,l(t)} and {dvu,l(t)} have constant values
{avu,l(nTc)} and {dvu,l(nTc)} over intervals [nTc, (n+1)Tc[.
Furthermore, the processes {avu,l(nTc)} and {dvu,l(nTc)} are
assumed to be independent, stationary and ergodic. Finally,
let a, b ∈ R

+, we assume a non-symmetric network, with
stationary total channel gains

∑LDS

l=1 E[|aDS,l(0)|2] = 1,∑LRS

l=1 E[|aRS,l(0)|2] = a2,
∑LDR

l=1 E[|aDR,l(0)|2] = b2.

A signal xu(t) transmitted in channel hvu(t) leads a re-
ceived signal yvu(t) =

∑Lvu

l=1 avu,l(t)xu(t− dvu,l(t)) + zv(t),
where zv(t) is a white Gaussian noise process with power
spectral density N0/2.

As the band grows large, the capacity of the point-to-point
non-coherent wideband multipath fading channel is equal to
the received SNR [6]. Thus, the capacities of the point-to-point
wideband channels between the source and the destination,
the source and the relay, and the relay and the destination are
respectively CDS = PS

N0

, CRS = a2 PS

N0

, and CDR = b2 PR

N0

.

B. Hypergraph model and main results

In this section, we introduce a hypergraph model of the
wideband multipath fading relay channel, and gather our
main results in Theorem 1. More precisely, we show that the
hypergraph min-cut is achieved by a non-coherent relaying
scheme based on peaky signals, which is described in details
in Section III, and we compare the hypergraph min-cut with
bounds on the capacity of the FD-AWGN relay channel.

The proposed hypergraph model of the wideband relay
channel is depicted in Figure 1(b). A hyperedge connects
a transmitting node to several receiving nodes. A message
transmitted over a hyperedge at a rate below its capacity
can be decoded reliably by all the receiving nodes. Messages
transmitted over disjoint hyperedges are independent. This
hypergraph model of the relay channel is motivated by the
broadcast nature of the wireless link: when a source transmits
a signal over the wireless link, several receiving nodes can
overhear the signal and extract some of the information trans-
mitted by the source. The hypergraph model allows to clarify
the correlation between the pieces of information decoded
at different receiving nodes, by breaking the wireless link
from a transmitting node into a set of hyperedges carrying
independent messages. In Figure 1(b), the blue hyperedge
represents a reliable channel from the source to both the relay
and the destination with capacity PS

N0

1]1,+∞[(a
2), while the red

and black edges represent extra reliable channels to the relay
only with capacity (a2 − 1)+ PS

N0

, and to the destination only
with capacity PS

N0

1[0,1](a
2), respectively. Note that the black

channel cannot coexist simultaneously with the red and blue
channels. Finally, the green edge represents a reliable channel
from the relay to the destination with capacity γb2 PS

N0

.
Theorem 1: Consider the non-coherent wideband multipath

fading relay channel, described in Section II. When the system
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bandwidth WS +WR grows large,
1) a lower bound on the capacity is provided by the min-cut

on the hypergraph model

R = min
{
max{1, a2}, (1 + b2γ)

} PS

N0

(
1− 2

Td

Tc

)
. (1)

2) this achievable rate (1) is equal to the wideband limit
of the generalized block Markov lower bound of the
FD-AWGN channel [2] with the same received SNRs in
the point-to-point source-destination, source-relay, and
relay-destination channels when the channel is under-
spread (Td � Tc).

3) in the case where a2 ≥ 1 + b2γ and Td � Tc, this
achievable rate (1) is equal to the FD-AWGN cut-set
upper-bound (1+b2γ)PS

N0

, and it is therefore the capacity
of the non-coherent wideband multipath fading channel.

The proof of 1) in Theorem 1 is provided in [10]. We now
address 2) and 3). The cut-set upper bound, and the generalized
block-Markov lower bound on the capacity of the FD-AWGN
relay channel were derived in [2]. When the system bandwidth
grows large, the cut-set upper bound converges to

CFD−AWGN ≤ min
{
(1 + a2), (1 + γb2)

} PS

N0
, (2)

and the generalized block-Markov lower bound converges to

CFD−AWGN ≥ min
{
max{1, a2}, (1 + γb2)

} PS

N0
. (3)

Comparing (1) and (3) shows that the lower bounds on the
capacity of the non-coherent multipath fading relay channel
and the FD-AWGN channel coincide in the wideband limit
when the channel is underspread (Td � Tc). This justifies 2)
in Theorem 1, and shows that the hypergraph model is also
valid in the FD-AWGN case.

In the case where a2 ≥ 1 + b2γ and the channel is
underspread (Td � Tc), the bounds (1), (3) and (2) coincide.
The capacity of the multipath fading relay channel with
infinite bandwidth cannot exceed the cut-set upper bound of
the infinite bandwidth AWGN relay channel. We can then
conclude that (1+ b2γ)PS

N0

is the capacity of the non-coherent
wideband multipath fading channel in that case, as stated in
3) in Theorem 1.

The multipath fading achievable rate (1) and the FD-AWGN
cut-set upper-bound (2) are plotted in Figure 3 in blue and red
respectively, in the case where 1 < γb2.

III. RELAYING SCHEME ACHIEVING THE MIN-CUT

In this section, we describe the non-coherent scheme which
achieves the hypergraph min-cut in the multipath fading case.

A. Peaky Signaling at Source

Let MS , MR and MD be positive integers such that the
codebook size at source is MS = MRMD. Consider a
couple of independent random integers (m1,m2) such that
m1 ∈ NMR−1 � {0, . . . ,MR − 1}, m2 ∈ NMD−1 �

{0, . . . ,MD−1}. Then the Euclidian division theorem ensures
that there exists a unique source message m ∈ {0, . . . ,MS−1}

m = m1MR +m2

m1

m2

m ∈ NMS−1

m1 ∈ NMR−1

m2 ∈ NMD−1

0 1 MR − 2 MR − 1

01 MD − 1

Fig. 2. Binning m = (m1,m2)

such that m = m1MD + m2. The representation of m as
a couple (m1,m2) has a binning interpretation. Indeed, the
MS messages can be grouped into MR bins of MD = MS

MR

messages. The integer m1 represents the bin index of message
m, while m2 is the index of message m within bin m1,
as illustrated in Figure 2. For m1 ∈ NMR−1, the m1-
th bin is denoted binm1

and contains the MD messages
binm1

= {m1MD, . . . ,m1MD +MD − 1}.
During the first block of the cooperative transmission

scheme, the source transmits a message m using the peaky-
signaling scheme in [6], which was shown to achieve capacity
in the wideband regime, and that we recall briefly in this
section. The transmission scheme is based on Frequency Shift
Keying (FSK) and low-duty cycle, and is therefore peaky both
in frequency and time. We denote by θ ∈]0, 1] the duty-factor,
representing the fraction of time during which the source
actually transmits power. If the source transmits power during
Ts, then the time separating two successive transmissions
is Ts/θ. Using FSK the transmitted signal corresponding to
the m-th message is given in the baseband by a sinusoid at
frequency fm with power PS/θ

xS(t) =

{ √
PS

θ exp(j2πfmt) , 0 ≤ t ≤ Ts

0 , Ts ≤ t ≤ Ts/θ,
(4)

where the transmission duration is chosen to be shorter than
the coherence time Ts ≤ Tc. Frequencies fm are taken to
be integer multiples of 1/(Ts − 2Td), leading to a minimum
bandwidth WS = MS/(Ts − 2Td) for a codebook size MS .

During the interval [Td, Ts − Td] the processes {aRS,l(t)}
and {dRS,l(t)} are constant, thus the signal received by the
relay, when message m is sent, is given by

yRS(t) =

LRS∑
l=1

aRS,l

√
PS

θ
exp(j2πfm(t− dRS,l)) + zR(t)

= GRSxS(t) + zR(t),

where GRS =
∑LRS

l=1 aRS,l exp(−j2πfmdRS,l) is the com-
plex gain of the source-relay channel during [Td, Ts − Td].

Similarly, we define the complex gain for the source-
destination channel GDS =

∑LDS

l=1 aDS,l exp(−j2πfmdDS,l)
and the signal received by the destination during [Td, Ts−Td],
yDS(t) = GDSxS(t) + zD(t). The source repeats the trans-
mission of a symbol N times over N disjoint time intervals Ts

θ
to obtain diversity. Both the relay and the destination receive
the N signals corresponding to message m during the first
temporal block of total duration T = NTs

θ .
To transmit a codeword carrying lnMS nats of information,

an average power PS is used, and the source rate is given by
R � θ

NTs
lnMS . Note that the source rate can be written

R = R1 +R2, with R1 � θ
NTs

lnMR and R2 � θ
NTs

lnMD.
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B. Processing at Relay

Upon reception of the N source signals, the relay first de-
codes the bin index m̂1, then it forwards m̂1 to the destination
using peaky signaling. Note that if the number of bins was set
to MR = 1 single bin, this would render the relay unused, and
correspond to a direct transmission from S to D.
Phase 1: Decoding m̂1 by correlating
The relay correlates the nth received signal against each
frequency k ∈ NMS−1, forming the correlations

RRS,k(n) �
1√

N0(Ts − 2Td)

∫ Ts−Td

Td

yRS(t)exp(−j2πfkt)dt

= δkm

√
PS(Ts − 2Td)

θN0
GRS(n) +Wk(n), (5)

where GRS(n) is the complex gain in interval n, {Wk(n)}n
are i.i.d. circularly symmetric complex Gaussian ran-
dom variables with unit-variance. By modeling assumption,
{GRS(n)}n are i.i.d. complex random variables. Assuming a
large number of paths, {GRS(n)}n can be modeled by i.i.d.
circularly symmetric complex Gaussian random variables with
0-mean and variance a2. Then for each k, {Rk(n)} are i.i.d.
CN (0, σ2

k) with variances

σ2
k = 1 + δkm

a2PS(Ts − 2Td)

θN0
, k ∈ NMS−1. (6)

Note that σ2
k = 1 for all k �= m. The relay decoder builds the

decision variables

SRS,k =
1

N

N∑
n=1

|RRS,k(n)|
2, (7)

which for all k �= m are i.i.d. These decision variables are
compared with the threshold AR = 1 + (1 − ε)a

2PS(Ts−2Td)
θN0

,
with ε ∈]0, 1[ to determine the set SR of bins containing at
least one frequency above threshold

SR � {k ∈ NMR−1 : ∃ l ∈ bink s.t. SRS,l ≥ AR}. (8)

If SR only contains a single bin k, the relay decodes m̂1 = k,
otherwise it declares an error.
Phase 2: Forwarding the bin index m̂1

If the relay has not declared an error at the end of Phase 1,
then it forwards the bin index m̂1 to the destination using
peaky FSK in the second frequency band, with duty cycle θ
and frequencies multiple of 1/(Ts − 2Td). Similarly to the
source, the relay repeats N times the transmission of m̂1

over disjoint intervals of duration Ts

θ for diversity. In the n-th
interval, during the fraction θ of time where the relay signal is

non-null, the signal is given by xR(t) =
√

PR

θ exp(j2πfm̂1
t).

During the interval [(N + n − 1)Ts

θ + Td, (N + n)Ts

θ −
Td], of length (Ts − 2Td), the signal received by the des-
tination, corresponding to the n-th relay signal, can be
written yDR(t) = GDRxR(t) + zD(t), where GDR =∑LDR

l=1 aDR,l exp(−j2πfm̂1
dDR,l) is the complex gain of the

relay-destination channel. To transmit a codeword carrying
lnMR nats of information, a minimum bandwidth WR =
MR/(Ts − 2Td) and an average power PR are used, and the
relay rate is given by R1 = θ

NTs
lnMR.

(1 + γb2)PS

N0

PS

N0

(1
+
a
2 )

PS

N
0

a
2
PS

N
0

S-R channel
gain a2

1 γb2 1 + γb2

Rate [bps]

S: tx at CDS

R: ∅
D: Dec(m)S: Tx at CRS

R: Freq. Binning at
CRS − CDS ≤ CRD

D: Dec(m1− > m2)

S: Tx at CDS + CDR

R: Freq. Binning at
CDR ≤ CRS

D: Dec(m1− > m2)

Cut-set UB
Frequency binning LB

Fig. 3. Bounds on the capacity of the non-coherent wideband multipath
fading relay channel

C. Decoding at Destination

At the end of the second phase, the destination has received
2N signals corresponding to the same message m, half coming
from the source, and half being the retransmissions from the
relay. The destination first processes the signal from the relay
to decode the bin index m1, then the signal from the source
to decode the remaining index m2.

Step 1: Decoding the bin index ˆ̂m1

Similarly to (5), the destination correlates the N signals from
the relay against each of the MR frequencies in the second
band, to form the correlations RDR,k(n), for n ∈ NN , and
k ∈ NMR−1, given by

RDR,k(n) = δkm̂1

√
PR(Ts − 2Td)

θN0
GDR(n) +WR,k(n),

where {WR,k(n)} are i.i.d. CN (0, 1). Assuming a large num-
ber of paths, {GDR(n)}n are modeled by i.i.d. CN (0, b2)
random variables. Then, for each k ∈ NMR−1, the variables
{Rk(n)}n are i.i.d. CN (0, σ2

R,k) with variances σ2
R,k =

1+ δkm̂1

b2PR(Ts−2Td)
θN0

. The destination compares the decision

variables SDR,k = 1
N

∑N
n=1 |RDR,k(n)|2 with the threshold

BR = 1+(1− ε1)
b2PR(Ts−2Td)

θN0

and builds the set S1 = {k ∈
NMR−1 : SDR,k ≥ BR}. If |S1| = 1, the destination decodes
ˆ̂m1, otherwise it declares an error.

Step 2: Decoding the index m̂2

If the destination has not declared an error at the end of Step 1,
it can proceed with the decoding by processing the signal it
received from the source in the previous block. The destination
uses ˆ̂m1 to locate the bin of MD frequencies containing the
source message m in the signal yDS . The destination correlates
the N messages it received from the source against the MD

frequencies in bin ˆ̂m1
= { ˆ̂m1MD, . . . , ˆ̂m1MD +MD − 1} to

form the correlations RDS,l(n), for n ∈ NN , and l ∈ bin ˆ̂m1

RDS,l(n) = δlm

√
PS(Ts − 2Td)

θN0
GDS(n) +WS,l(n), (9)

where {WS,l(n)}n are CN (0, 1), and for each l, the variables
{RDS,l(n)} are i.i.d. CN (0, σ2

S,l) with variance σ2
S,l = 1 +
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δlm
PS(Ts−2Td)

θN0

, l ∈ bin ˆ̂m1
. It should be pointed out that the

relayed signal allows the destination to reduce the dimension
of the space in which it looks for the source message m. More
precisely, the relayed message allows the destination to reduce
the number of noisy frequencies, to which it needs to compare
the signal yDS , from MS = MRMD to MD. This observation
is critical in the wideband regime where performance is mainly
impaired by noise. For l ∈ bin ˆ̂m1

, the destination builds

the decision variables SDS,l = 1
N

∑N
n=1 |RDS,l(n)|2. By

comparing them with BS = 1+ (1− ε2)
PS(Ts−2Td)

θN0

, it builds
the set S2 = {l ∈ bin ˆ̂m1

: SDS,l ≥ BS}. If |S2| = 1, the
destination decodes m̂2, otherwise it declares an error.

If the destination decoder passes Steps 1 and 2 without
declaring an error, the destination forms the final decoded
message m̂ = ˆ̂m1MD + m̂2.

IV. HYPERGRAPH INTERPRETATION

In this section, we give the correspondence between the
min-cut achieving scheme in Section III, and the hypergraph
model in Figure 1(b). The relaying scheme in Section III is
a form of selective decode-and-forward, where the minimum
amount of relayed information depends on the quality of
the source-relay channel CRS = a2 PS

N0

with respect to the
channels CDS = PS

N0

and CDR = b2γ PS

N0

. Indeed, the amount
of information forwarded by the relay is parameterized by the
value of MR, relatively to MS = MRMD. Three different
regimes can be identified, as shown in Figure 3.

Regime a2 ≤ 1: in this regime CRS ≤ CDS , the source-
destination channel is more reliable than the source-relay chan-
nel. S transmits directly to D at capacity CDS = PS

N0

without
using the relay. This is equivalent to setting the number of bins
to a single bin, MR = 1, containing all messages MD = MS .
The achievable rate R = CDS = PS

N0

is given by the capacity
of the black source-destination hyperedge.

Regime 1 < a2 ≤ 1 + b2γ: in this regime CDS <
CRS ≤ CDS + CDR, the source-relay channel is stronger
than the source-destination channel but weaker than the cut
on the multiple-access (MA) side. S transmits m at rate
R = CRS = a2 PS

N0

, by splitting m into submessages m2 sent
on the blue hyperedge at rate R2 = CDS = PS

N0

, and m1 sent
on the red hyperedge at rate R1 = CRS −CDS = (a2−1)PS

N0

.
R decodes and reliably forwards the bin index m̂1 to D on
the green hyperedge since R1 ≤ CDR = b2γ PS

N0

. D will use
the signals from R and S to decode the remaining index m̂2.
The number of bins is chosen MR ∈]1,MS[ such that MD

matches the capacity of the source-destination channel, and
MR can be handled by the source-relay and relay-destination
channels. The achievable rate R = CRS = a2 PS

N0

is given by
the sum of the capacities of the red and blue hyperedges.

Regime 1+ b2γ < a2: in this regime CDS +CDR < CRS ,
the source-relay channel is better than the multiple-access cut.
S transmits at a rate equal to the capacity of the MA cut R =
CDS +CDR = (1+ b2γ)PS

N0

, by splitting m into submessages
m2 sent on the blue hyperedge at rate R2 = CDS = PS

N0

, and
m1 sent on the red hyperedge at rate R1 = CDR = γb2 PS

N0

≤

CRS = a2γ PS

N0

. R decodes and forwards the bin index m̂1 to

D. The destination uses the signals from S and R to decode the
remaining m̂2. The number of bins MR ∈]1,MS [ matches the
capacity of the relay-destination channel, and MD ∈]1,MS [
matches the capacity of the source-destination channel. The
achievable rate R = CDS + CDR = (1 + b2γ)PS

N0

is given by
the sum of the capacities of the green and blue hyperedges.

In these three regimes, the achievable rate is the hypergraph
min-cut. The relationship between the rate achieved by the
peaky binning scheme and the hypergraph min-cut appears as
a simple tool to derive achievable rates, and the corresponding
transmission schemes, in larger wideband relaying networks.

V. CONCLUSION

We propose a hypergaph model of the relay channel in the
wideband limit, and show that its min-cut can be achieved
not only in the FD-AWGN case, but also in the non-coherent
multipath fading case thanks to a relaying scheme combining
peaky signals and binning. In certain channel configurations,
the so-obtained achievable rate also coincides with the cut-set
upper-bound, and thus is equal to the capacity of the non-
coherent wideband multipath fading relay channel.

In the remaining cases, where the achievable rate does not
coincide with the cut-set upper bound, a question remains
open: can the gap to the cut-set upper-bound be closed? If the
capacity of the relay-destination channel was infinite, as in the
SIMO channel, the cut (1+a2) P

N0

could be achieved, and the
gap closed. However, because of the relay power constraint
and the destination noise, the relay cannot make its received
signal perfectly available to the destination as in the SIMO
case. This raises the question as to whether virtual MIMO
gains can actually be achieved in the wideband regime.
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