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Abstract—We provide a geometric solution to the problem of
optimal relay positioning to maximize the multicast rate for low-
SNR networks. The network we consider consists of a single
source, multiple receivers and the only intermediate and locatable
node as the relay. We construct network the hypergraph of the
system nodes from the underlying information theoretic model
of low-SNR regime that operates using superposition coding and
FDMA in conjunction (which we call the “achievable hypergraph
model”). We make the following contributions.

1) We show that the problem of optimal relay positioning
maximizing the multicast rate can be completely decoupled
from the flow optimization by noticing and exploiting
geometric properties of multicast flow.

2) All the flow maximizing the multicast rate is sent over at
most two paths, in succession. The relay position depends
on only one path (out of the two), irrespective of the number
of receiver nodes in the system. Subsequently, we propose
simple and efficient geometric algorithms to compute the
optimal relay position.

3) Finally, we show that in our model at the optimal relay
position, the difference between the maximized multicast
rate and the cut-set bound is minimum.

We solve the problem for all (Ps, Pr) pairs of source and relay
transmit powers and the path loss exponent α ≥ 2.

Index Terms—Low-SNR, broadcast relay channel, geometry.

I. INTRODUCTION

We primarily consider the problem of optimal relay posi-

tioning in order to maximize the multicast rate in low-SNR

networks consisting of a single source s, a set of multiple

receivers T and an arbitrarily locatable relay r, on a 2-

D Euclidean plane. In [1], the authors previously addressed

this problem under a heavy and complex network flow opti-

mization framework. They showed that optimizing the relay

position can lead to a strong gain in the multicast rate.

In [2] the authors introduced equivalent hypergraph models

for the low-SNR Broadcast (BC) and Multiple Access channels

(MAC). The authors then derived an achievable hypergraph

model for the broadcast relay channel (BRC), obtained by

concatenating the equivalent BC and MAC hypergraphs. This

concatenated model follows from constraining the source and

relay to transmit using the optimal schemes for the low-SNR

BC and MAC: superposition coding and frequency division,

respectively. In this paper, building on this model, we solve

geometrically the problem of optimal relay positioning under

the pretext of multicast rate maximization, which is much

simpler and efficient than the solution proposed in [1].

Most importantly, we establish the fact that for a given

low-SNR BRC hypergraph G(N ,A), the multicast rate is

maximized by sending all the flow through at most two paths

in succession, independently of the number of destination

nodes. This is a consequence of simply maximizing the

multicast min-cut. The dependency of the multicast min-cut on

the relay position is essentially through a single path (out of

the two), and this motivates a simple geometric interpretation

and formulation of the problem. It should be noted that, the

“optimal relay position” refers to the position that maximizes

the multicast rate over a given achievable hypergraph, but in

general the achievable hypergraph model is not necessarily

optimal in terms of meeting the cut-set bound for low-SNR

networks. On the other hand, the achievable hypergraph model

performs closely to the peaky binning scheme in the case

of a single destination [3], and enjoys an important practi-

cal advantage of being easily scalable to more complicated

topologies. Finally, under our model the difference between the

maximum multicast rate and the cut-set bound is minimized

at the optimal relay position.

In the proposed geometric approach, we decouple the prob-

lem of rate maximization from the problem of computing the

optimal relay position. This substantially reduces the complex-

ity (compared to the flow optimization based framework in

[1]) and also provides a great deal of insight in understanding

the nature of such network planning problems. Finally, we

show that at the optimal position the difference between the

maximum multicast rate and the cut-set bound is minimized

under the achievable hypergraph model.

The paper is organized as follows. We introduce the low-

SNR achievable hypergraph model of the BRC in section II.

Then we prove certain geometric properties of multicast in

section III. The computation of optimal relay position is

divided in two parts, section IV for Ps = Pr and section V

for Ps 6= Pr. Finally, we conclude in section VI.

II. LOW-SNR SYSTEM AND HYPERGRAPH MODEL

A. System model and notations

The network topology is given by a hypergraph G(N ,A),
where N = {s, r, T}, and all nodes except r are fixed on the 2-
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. Here, h gives the path loss and Dij the distance from i to j.

D Euclidean plane. T = {t1, .., tn} denotes the set of n = |T |
receivers ordered in increasing distance from s. C represents

the convex hull of {s, T}. The multicast rate from s to T is

defined as RsT , min
t∈T

(Rst), where Rst is the total rate from

s to receiver t ∈ T . Ps and Pr = γPs are the total transmit

powers of s and r, respectively, and γ > 0 is their ratio. Duv

denotes the Euclidean distance between nodes u and v, and

α ≥ 2 the path loss exponent. For a subset Q ⊆ N\r, define

LQ(C) as the point in C, that minimizes the maximum over

the distances between itself and each node in Q, i.e.

LQ(C) , arg min
r∈C

(

max
j∈{Q}

(Drj)

)

. (A)

The value of objective function of the output of Program (A)

is denoted as DQ.

B. Low-SNR BC, MAC and BRC hypergraph models

In [1], [2], it was shown that concatenating the low-SNR

BC (superposition coding) and MAC (FDMA) equivalent

hypergraph models results in an achievable hypergraph model

for the low-SNR BRC. The rate region of this model is

included in the capacity region of the low-SNR broadcast

relay channel. In fact, even though superposition coding and

FDMA are independently capacity achieving for the low-SNR

AWGN BC and MAC channels respectively, their combination

in general is not capacity achieving for the low-SNR relay

channel, and a fortiori for the low-SNR BRC [3].

In this section, we briefly recall the equivalent hypergraph

models for the low-SNR BC and MAC, and the achievable

hypergraph model for the BRC [1]. Note that in the low-SNR

regime, BC and MAC are not limited by interference.

1) Low-SNR BC equivalent hypergraph: Superposition

coding is known to achieve the capacity region of the AWGN

BC. In the low-SNR regime, the rates achieved by superpo-

sition coding boil down to the time-sharing region [4]–[6].

For a given topology with |T | = n receivers, the hypergraph

will contain at most n hyperarcs with non-zero capacities [1].

Figures 1(a) and 1(b) illustrate the two-destination case.

2) Low-SNR MAC equivalent hypergraph: In the low-SNR

regime, interference becomes negligible with respect to the

noise [1], [2], and all sources can achieve their point-to-

point capacity to the common destination, like with frequency

division multiple access (FDMA). In the general wideband

MAC with n sources, the hypergraph model consists of n
hyperarcs of size 1 from each source si, i ∈ {1, .., n} to

the destination with non-zero capacity. Figures 1(c) and 1(d)

illustrate the two-source case.
3) Low-SNR BRC achievable hypergraph: We can obtain

an achievable hypergraph model of the low-SNR BRC by sim-

ply concatenating the BC and MAC equivalent hypergraphs,

as shown in Figures 1(e) and 1(f) for the two-destination case.

As mentioned before, this achievable hypergraph model is

suboptimal in general for the BRC, but the ability to scale

easily to larger and complex networks is one of its biggest

strength.

III. GEOMETRIC PROPERTIES OF MULTICAST

In this section, we derive the geometric properties of the

optimal relay position maximizing the multicast rate for the

BRC. We first focus on the single destination case of the BRC:

the relay channel, in Section III-A. Then, these preliminary ob-

servations and properties are extended for the general problem

with an arbitrary number of destinations, in Section III-B.

A. Single destination: low-SNR relay channel

Consider the simple network in Figure 2 (a), with a fixed

source s, a fixed receiver t and an arbitrarily positionable relay

r, where the multicast rate Rst from s to t is to be maximized.

Naturally, Rst depends on the position of r. The achievable

hypergraph in Figure 2 (a) can be broken into two subgraphs,

shown in Figures 2 (b) and (c), which are essentially the two

disjoint paths from s to t.
Our claim is that the optimal position of the relay maximiz-

ing the multicast rate from s to t lies on the line segment s−t
joining s and t, and at this optimal position all the flow Rst is

sent through a single path consisting of two hyperarcs, namely

{(s, r), (r, t)} shown in Figure 2 (c). This holds true for any

given pair of power constraints (Ps, Pr) ≻ 0 and for any path

loss exponent α ≥ 2. We prove this claim in Lemmas 1 and

2 hereafter.

We first recall the following lemma from [1].

Lemma 1 (Lemma 1 [1]): The optimal position of r maxi-

mizing RsT lies inside the convex hull C.

Here, Lemma 1 simply implies that the optimal position of

r lies on the segment s − t.
The rates over the three hyperarcs {(s, r), (r, t), (s, rt)} =

A are given by,

Rsr =
Psr

Dα
srN0

, Rrt =
Prt

Dα
rtN0

, Rsrt =
Psrt

Dα
stN0

, (1)

Psr + Psrt ≤ Ps, Prt ≤ Pr, (2)
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Fig. 2. (a): One receiver case decomposed into two subgraphs from s to t,
(b) and (c), respectively. (d): Optimal position of r for Ps = Pr and α = 2,
which is at the perpendicular bisector (red) of line segment s − t. (e): Left
bias for Ps < Pr . (f): Right bias for Ps > Pr .

where N0 is the noise power spectral density. Note that the

multicast rate is given by Rst = Rsrt + min(Rsr, Rrt).
Lemma 2: The optimal location of r on the segment s − t

for a simple BRC with γ ∈ (0,∞) and α ≥ 2 that maximizes

the multicast rate Rst satisfies,

D∗
sr =

Dst

1 + α

√
γ

, D∗
rt =

α

√
γDst

1 + α

√
γ

, (3)

and the optimal (maximized) multicast rate is given by,

R∗
st =

Ps

(D∗
sr)

αN0
=

γPs

(D∗
rt)

αN0
(4)

where all the flow R∗
st is sent over the path {(s, r), (r, t)}.

In Lemma 2 the starred entities refer the optimal values and

for the proof the reader is referred to Appendix A in [7].

Lemma 2 essentially gives the position of r in terms of

how far it is from s and r on the segment s − t. Also, it

provides the maximized multicast rate R∗
st that is achieved at

this position. It can be easily seen that the relay position only

affects the rate over the path {(s, r), (r, t)}. Since the min-cut

of the path {(s, r), (r, t)} is strictly larger than the min-cut

of the path {(s, rt)}, i.e. the rate that can be sent for a unit

power over the former path is strictly larger than the latter path

(Rsrt < min(Rsr, Rrt)), the rate over the path {(s, r), (r, t)}
should be maximized first by simply maximizing its min-

cut min(Rsr, Rrt) before allocating any power to the path

{(s, rt)}. The min-cut min(Rsr, Rrt) is maximized at the

position on the segment s − t such that rates over the two

hyperarcs of the path {(s, r), (r, t)} become equal, and all

the flow from s to t is transmitted over this path only. The

maximized multicast flow R∗
st is then simply given by the

rates of either of the two hyperarcs.

Several important conclusions can be drawn from Lemma 2.

The multicast flow optimization can be separated from the

determination of the optimal relay position that maximizes the

multicast flow. Even if the aim is not to maximize the multicast

flow (for instance by simply choosing not to use all the source

and relay powers), Lemma 2 still gives the most suitable relay

position for any feasible multicast rate Rst ≤ R∗
st. At the same

time, the algorithmic style intuitive proof arguments in the

previous paragraph indicate that upon computing the optimal

relay position, the multicast rate maximization problem could

be casted as a straightforward linear program resulting in a

simple power allocation scheme maximizing the multicast rate.

This fact will prove handy for the general case with arbitrary

number of destinations. On the other hand, we observe the

dependency of the optimal relay position on the constants α
and γ. If γ = 1 i.e. Ps = Pr, the optimal relay position is

always at the mid-point of the segment s− t for any value of

α ≥ 2. When γ 6= 1, there will be a natural bias on the optimal

position of r either towards s or t, depending on the value of

γ. This bias will also depend on the value of α. Figure 2(e)

and 2(f) show the bias effect.

B. Multiple destinations

In this subsection, we extend the simple geometric insights

developed in Section III-A for a single destination to the

general case of an arbitrary number of destinations |T | = n.

Let us first note the following. For a given hypergraph

G(N ,A), and a fixed position of r, we have at most (n+1)+
(n) hyperarcs in the system, i.e. |A| = 2n + 1. The former

(n + 1) are source hyperarcs, emanating from s to the nodes

in N\s and the latter n are the relay hyperarcs, emanating

from r to all T . Also, for any given position of r there always

exist at least two paths that will span all the receiver set T ,

namely {(s, T )} (or {s, t1..tn}) and {(s, T1), (r, T2)} (where

r ∈ T1 and T1 ∪ T2 = {r, T}).

Now, consider that each hyperarc (i, J) ∈ A is associated

with a continuous function fiJ(P+
i ,D−

iJ ) : R
2 −→ R, that

is a monotonically increasing in the transmit node’s power Pi

and monotonically decreasing in the distance DiJ , where DiJ

is the Euclidean distance between the transmit node i and the

farthest receiver node j ∈ J (from i) spanned by the hyperarc.

Then the following theorem holds true.

Theorem 1: Given a hypergraph G(N ,A) and the associ-

ated rate functions fiJ(P+
i ,D−

iJ ) : R
2 −→ R for each hy-

perarc in A, at the optimal position maximizing the multicast

rate RsT one of the two multicast flow characteristics holds:

(i) all the optimal flow R∗
sT goes through at most two paths

{(s, T1, (r, T2)} and {(s, T )}, in succession.

(ii) all the optimal flow R∗
sT can be arbitrarily split between

the two paths {(s, T )} and {(s, T1), (r, T2)}.

For the proof of Theorem 1, refer to Appendix B in [7].

Theorem 1 partially generalizes Lemma 2. We say partially,

because on one hand, Theorem 1 establishes the important

multicast flow characteristics at the optimal relay position,

but it does not provide a simple numerical result that de-

termines the optimal relay location (like Lemma 2). Note

that, for a given relay position there could be multiple paths

from s, through r, to all T , but in the Theorem 1 by path

{(s, T1), (r, T2)} we mean the path from s, through r, to all

T that has the highest min-cut among all the paths from s,

through r, to all T . Intuitively, Theorem 1 states that only those

paths will contain the multicast flow from s to the receiver set

T that serve all T , namely {(s, T )} and {(s, T1), (r, T2)}. All

other path that serve proper subsets of T will carry no flow as

they do not contribute to the multicast flow and among all the

paths serving all T through r, only the path with the highest
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min-cut will carry the multicast flow. This fact is a simple yet

fundamental consequence of the definition of multicast.

Theorem 1 reveals a lot about the nature of multicast flow

over a hypergraph. The dependence of relay position on the

rate of only a single path {(s, T1), (r, T2)} reduces the problem

to its core by removing the clutter away. In other words, now

we only need to worry about the maximization of the flow

over this single path and the relay position that maximizes

the flow over this path also maximizes the multicast flow

RsT . This result of Theorem 1 motivates a pure geometric

interpretation of the problem. If we imagine the two hyperarcs

(s, T1) and (r, T2) to be two circles Cs and Cr centered at s
and r with radii πs and πr, respectively, then the optimal relay

positioning problem could be stated as: For a given G(N ,A),
find the point in C such that when r is positioned at this point,

max( α

√
γπs, πr) is minimized while r ∈ Cs and the region of

union of two circles C∪ = Cs ∪ Cr encompasses all T .

At first, it seems plausible to try a simple (preferably

convex) optimization framework to compute such a point,

but the condition that the two circles must encompass all N
brings in discreteness, which we avoid for obvious reasons. In

contrast, we propose a simple (polynomial time) algorithm to

compute such point in the next sections. Once the optimal relay

position is obtained, obtaining optimal power allocations (for

s and r) maximizing the multicast rate boils down to solving

a simple linear program involving only two paths. We divide

the development of this algorithm into two cases of γ = 1 and

γ ∈ (0,∞). The case of γ = 1 is easy to understand and holds

importance in its own right. In addition it develops the basic

intuition for the proposed algorithm and leaves the extension

to the case of all values of γ ∈ (0,∞), as straightforward.

IV. (Ps = Pr) - CASE AND ALGORITHM

In this section, we have γ = 1 and α ≥ 2 for a

given G(N ,A) on the 2-D Euclidean plane. The optimal

relay positioning problem stated geometrically in the previous

section simply boils down to finding the point in C such that

max(πs, πr) is minimized while r ∈ Cs and C∪ encompasses

all T . We divide the problem in the following two cases based

on the topology of the given G(N ,A).

A. s − tn mid-point case

Lemma 3: If r is placed at the mid-point of s − tn such

that the hyperarcs Cs and Cr each with radii
Dstn

2 span all

T , then it is the optimal relay position maximizing RsT .

The proof of Lemma 3 is a straightforward generalization

of Lemma 2 and therefore is omitted. Intuitively, Lemma 3

simply states that since the farthest node (from s) tn is also

the limiting node for maximizing RsT , if the rate is maximized

only to tn while guaranteeing it to all other nodes in T , then

this maximizes RsT as well. This means that if r is placed at

the mid-point of the segment s−tn (as this position maximizes

the rate to tn only) and if the two hyperarcs of the path

{(s, r), (r, tn)} ({Cs, Cr}) span all T , then clearly this is the

relay position that maximizes RsT .

B. General Case

In this case we tackle all topologies and case A becomes a

special case of it. Recall that, the entity LQ(C) represents the

coordinates of the point which is the argument of the objective

function of the output of program (A), and DQ is the value

of the objective function of the output of program (A).

Optimal relay positioning Algorithm (ORP)

Given: G(N ,A).

1) Compute l0 = L{N\r}(C) and build the set N0 = {t ∈
T |Dst < Dl0t&Dl0t > Dsl0} = {t′1, .., t′m} in increasing

order of distance from s. If N0 = {∅}, declare l0 as the

optimal relay position and quit, else go to step 2.

2) Build the set N1 = {N\(r,N0)} and compute the

point l1 = LN1
(C). Form the hyperarcs Cs and Cl1

of radii Dsl1 and DN1
, respectively. If C∪ = Cs ∪ Cl1

encompasses all T , output l1 as the optimal relay position

and quit, else go to step 3.

3) Reform the hyperarc Cs of radius Dst′
m

and build the set

N2 = {t ∈ T |Dst > Dst′
m
} and compute l2 = LN2

(C).
Declare l2 as the optimal relay position and quit.

Algorithm ORP is a straightforward set of basic and intuitive

computational steps based on the properties of the point

l0 = LN\r(C). If there exist no node t′ ∈ T such that

t′ /∈ Cs and Dst′ < Dl0t′ (i.e. set N0 is empty), that can be

directly reached by s rather than by a path through r, then l0 is

certainly the optimal relay position. In contrast, if the set N0

is not empty, then there exist at least one receiver node in the

system that influences the computation of the optimal relay

position but can be served directly by Cs. Therefore, either

the nodes in N0 can be removed from the computation of

the optimal relay position (l1 in Step 2) and max(πs, πr) can

be further reduced or we could reform the hyperarc Cs with

radius Dst′
m

(where, t′m is the farthest node in N0 from s) and

then computing the point l2 for the nodes that were not covered

by Cs and thus reducing the value of max(πs, πr). Note that,

Algorithm ORP categorizes all possible topologies of the given

G(N ,A) in three steps and there is no underlying iterative

process. This makes algorithm ORP behave like a numerical

formula, which we originally wanted from Theorem 1.

We leave the formal proof that ORP always outputs the

optimal relay position maximizing RsT to Appendix C in [7]

and extend this simple approach in a straightforward manner

to the case of all values of γ ∈ (0,∞) in the next section.

V. Ps 6= Pr- CASE AND ALGORITHM

In this section, we consider γ ∈ (0,∞) for a given

G(N ,A) and α ≥ 2. Almost all the theory developed in

Section IV simply transcends to this section, with certain

notable differences. Mainly, that when γ 6= 1 it gives rise

to a bias in the positioning of r ( ref. Figure 2(e) and 2(f)).

Taking into account the bias while computing the optimal

relay position will be the main enhancement in this section.

Likewise previously, we first consider the s − tn case.
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A. s − tn case

Lemma 4: Given G(N ,A), if r is placed on s − tn at a

distance of Dsr =
Dstn

1+ α
√

γ
from s, such that r ∈ Cs and C∪ =

Cs ∪ Cr spans all T , then it is optimal relay position that

maximizes RsT .

The line of argument for the proof of Lemma 3 (using

Lemma 2) could be simply generalized for Lemma 4.

B. General Case

In this case, like in Section IV, we generalize to all

topologies. As we know, that the values of γ (when not equal

to 1) and α inflict the bias on the relay position. The main

difference in case of Ps 6= Pr is the computation of the point

li = LQ(C) (i = {0, 1}), given by,

li = LQ(C) , arg min
i∈C

(

max
(j∈Q\s)

( α
√

γDsi,Dij)

)

. (B)

and the computation of the set N0 = {t ∈ T | α

√
γDsl0 >

Dl0t} = {t′1, .., t′m}, in the Algorithm ORP. Program (B)

and the set N0 takes into account the bias induced by the

differences in the transmit power of the source and relay and

the value of α. The rest of the algorithm remains the same.

Now that we have an efficient algorithm for computing the

optimal relay position, we can be more ambitious to assess

the standing of our work in a more theoretical sense. One

of the important consequences of this work that signifies its

theoretical importance is shown in Figure 3. We computed the

difference between the optimal multicast rate R∗
sT (for a given

position of r) and the cut set bound for |T | = 9 receiver nodes

network at 21 interesting positions, including the optimal relay

position computed by the Algorithm ORP. At the optimal relay

position (blue point), this difference is minimized, confirming

the fact that the optimal relay position not only results in gains

but the maximized multicast rate is theoretically closest to the

cut-set bound at the optimal relay position in our framework.

It is worth mentioning that the theory developed in this

paper well transcends to the low-SNR fading channels , which

we do not discuss here but can be easily generalized from the

results of [2] and [3].

VI. CONCLUSION

We list the important deductions from our work in the

following points.

1) The problem of optimal relay positioning to maximize

the multicast rate for the achievable hypergraph model

of low-SNR networks using superposition coding and

FDMA, can be decoupled from flow optimization and

casted as a simpler geometric problem, as opposed to a

complex network optimization approach of [1].

2) The geometric properties of multicast are innately simple

and provide interesting insights for relay positioning

problem. This is largely due to the fact that all the

multicast flow is pushed over at most two paths which

is a direct consequence of the definition of the multicast

flow, and this results in simple geometric interpretation.
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Fig. 3. |T | = 9 case with green receivers, red source and blue as the optimal
relay position. The optimal RsT and cut set bound difference (in nats/sec)
is calculated for 21 positions and is the lowest at the optimal relay position

(blue). We assume Ps

N0
= Pr

N0
= 1 (normalized) and α = 4.

3) Importantly, the benefits of determining the optimal relay

position are substantiated by the fact that the difference

between the maximized multicast rate and the cut-set

bound at the optimal position is minimized.

We now outline, what we think are certain important future

directions our work could take. The geometric properties of

multicast give great insights and are surprisingly easy to work

with. This motivates us to ask further, whether is it possible

to apply the simple techniques of our work for the optimal

relay positioning problem to moderate and high-SNR regimes

that are interference limited. Another natural and interesting

dimension is to look at the possibility of extending this work

to multicommodity flows.
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