
Sequential Relevance Maximization with Binary
Feedback

Vijay Kamble
EECS, UC Berkeley

vjk@eecs.berkeley.edu

Nadia Fawaz
Technicolor, Los Altos

nadia.fawaz@technicolor.com

Fernando Silveira
Technicolor, Los Altos

fernando.silveira@technicolor.com

Abstract

Motivated by online settings where users can provide explicit feedback about the
relevance of products that are sequentially presented to them, we look at the rec-
ommendation process as a problem of dynamically optimizing this relevance feed-
back. Such an algorithm optimizes the fine tradeoff between presenting the prod-
ucts that are most likely to be relevant, and learning the preferences of the user so
that more relevant recommendations can be made in the future.
We assume a standard predictive model inspired by collaborative filtering, in
which a user is sampled from a distribution over a set of possible types. For
every product category, each type has an associated relevance feedback that is as-
sumed to be binary: the category is either relevant or irrelevant. Assuming that the
user stays for each additional recommendation opportunity with probability β in-
dependent of the past, the problem is to find a policy that maximizes the expected
number of recommendations that are deemed relevant in a session.
We analyze this problem and prove key structural properties of the optimal pol-
icy. Based on these properties, we first present an algorithm that strikes a balance
between recursion and dynamic programming to compute this policy. We further
propose and analyze two heuristic policies: a ‘farsighted’ greedy policy that at-
tains at least 1 − β factor of the optimal payoff, and a naive greedy policy that
attains at least 1−β

1+β factor of the optimal payoff in the worst case. Extensive sim-
ulations show that these heuristics are very close to optimal in practice.

1 Introduction

Predicting the preferences of users in order to present them with more relevant engagements is a
fundamental component of any recommendation system [27, 25]. Over the years, a wide variety of
approaches have been proposed for this problem (see [1] for a survey). These include content based
approaches that rely on generating user and item profiles based on available data [22, 18], collab-
orative filtering approaches [24, 13] that recommend items based on similarity measures between
users and/or items, and a combination of both [4, 8]. In this paper, motivated by several settings
of interest in which explicit feedback about the relevance of the recommendations can be received
from the user on small timescales, we pursue a less studied approach (see [28]) of modeling the
recommendation process as a sequential optimization problem. Below are a few examples of such
settings.

• Online retail: A user enters an online shopping portal to purchase an accessory, e.g. a
watch. She is sequentially presented with various design choices and based on her feedback
to these designs, the system adaptively presents recommendations that are more likely to
be liked by her.
• Online media-on-demand services: A user using an online music-on-demand service would

like to find a new genre of music to listen to. Short sound-clips are played for her sequen-

1



tially, and based on the feedback that she provides for these clips, the recommendation
system seeks to adaptively find genres that are better suited to her tastes.

• Advertising in online video: As video ads are inherently more disruptive of a user’s at-
tention, and thus potentially more valuable than sponsored search ads, there is a strong
motivation for designing ad allocation mechanisms that take into account the relevance of
these ads to the users. Services like YouTube and Hulu collect explicit feedback about the
relevance of an ad after it is shown, and this feedback can be used to adaptively learn the
preferences of the users and show more relevant ads.

We consider a model that is derived from cluster models for collaborative filtering (see [6]) in which
the history of user behaviors is compressed into a predictive model, where users are classified into
‘types’ that capture the preference profile of the user. A typical recommendation generation algo-
rithm dynamically observes user behavior and uses maximum-likelihood estimates based on this
predictive model to choose products that are more likely to be relevant. Our approach replaces
this maximum-likelihood estimation with a sophisticated optimization problem, in which the two
conflicting goals of presenting the most relevant products based on current predictions of user pref-
erences, and learning the underlying type of the user so that more relevant engagements can be
shown later, are concurrently optimized in a precise and systematic way.

Our model assumes that a user that enters the system is sampled from a probability distribution
over a set of types that is a priori known to the system designer. Each type is associated with
a string of ‘relevance’ ratings for the different categories of products. We focus on the simplest
case in which this relevance rating is binary, i.e. the user considers a category of products either
relevant or irrelevant. We assume that the number of recommendation opportunities available in a
session is random, modeled as a geometric random variable arising from the assumption that the
user stays for each additional opportunity with a fixed probability β independent of the past. Under
this setting we focus on the problem of adaptively maximizing the expected cumulative relevance of
recommendations presented to the user during the session.

Our main contribution in this paper is the analysis of this sequential relevance maximization prob-
lem. At first glance, one can see that the optimal policy can be determined using a naive recursive
algorithm. But as is typical of such algorithms, it is highly inefficient due to repetition of redun-
dant work. The standard tool to solve such problems is dynamic programming, which turns these
inefficient recursive algorithms into efficient iterative solutions. But unfortunately in our case, the
state space for this program grows exponentially in the number of types and categories. Further, an
efficient enumeration of these states is difficult.

We first derive certain key properties of the structure of the optimal policy using probabilistic inter-
change arguments. Using these properties, we provide an algorithm that strikes a balance between
recursion and dynamic programming to solve for the optimal policy. Unfortunately, this algorithm
still remains computationally prohibitive. Motivated by our structural results, we then propose and
analyze two heuristic policies: a ‘farsighted’ greedy policy that is easier to compute and a naive
greedy policy that is analogous to the maximum-likelihood prediction performed by typical recom-
mendation systems. We then prove that these policies are approximately optimal, i.e. they achieve
a constant factor of the optimal payoff. We finally perform extensive simulations on random prob-
lem instances and we observe that these heuristic policies typically perform much better than that
predicted by our worst case bounds.

1.1 Related work

The idea of posing the recommendation process as an optimization problem is not new. To the best
of our knowledge, its earliest appearance in literature can be traced back to [5], which proposed a
decision-theoretic modeling of the problem of generating recommendations (on a palm-top) for a
user navigating through an airport. [28] proposed a framework for modeling the sequential opti-
mization problem in online recommendation systems as a Markov Decision Process (MDP) [23].
Their underlying formulation is quite general and their focus is on defining and establishing this
paradigm. The model that we consider on the other hand is more structured and our focus is on the
analysis of the resulting optimization problem.

2



The sequential relevance maximization problem is closely related to Bayesian multi-armed ban-
dit problems. In a multi-armed bandit problem (MAB), first introduced by Thompson in [29], a
decision-maker faces a set of arms whose reward characteristics are uncertain and seeks to optimize
the sequence in which they are pulled so as to maximize some long-run reward. In such problems
one faces the tradeoff between exploration, i.e. learning the reward characteristics of the arms, and
exploitation, i.e. accumulating rewards by choosing good arms based on current estimates. These
problems have been commonly studied under two distinct settings: Bayesian and stochastic, with a
different set of analytical approaches used in each. Our model falls in the Bayesian setting [12, 30],
in which an initial prior distribution is assumed over the parameters of a probabilistic reward gen-
erating model for each arm, and one performs Bayesian updates of these estimates as rewards are
observed. One then solves the well-defined problem of maximizing either the long-term average or
discounted cost. The standard solution tool in this case is dynamic programming. The stochastic
setting [17, 16] (also see [7] for a recent survey) does not assume any prior distribution over the
parameters and one instead tries to find policies that minimize the worst case rate at which losses
relative to the expected reward of best arm (called ‘regret’) are accumulated [3, 2]. The focus is on
characterizing this optimal rate.

Most of the literature in these settings has focused on the case where the rewards of different arms
are statistically independent. In the Bayesian case, a seminal result by Gittins [12] shows that the
optimal policy dynamically computes an index for each arm independently of all other arms, and
picks the arm with the highest index at each step. But in our case the relevance of different products
are correlated through the hidden user type and hence it is a type of a Bayesian MAB problem
with correlated or dependent arms. It is well known that the decomposition result of Gittins does
not hold for this case. Over the years there has been sporadic progress in tackling this problem,
with most papers focusing on specific models. [11] and [15] analyze two-armed bandit problems in
which reward characteristics of two arms are known, but which arm corresponds to which reward
distribution is not known, which leads to a natural dependence between the arms. In this case,
the general case of more than two arms still remains open. [21] studies another version of the
problem in which the arms can be grouped into clusters of dependent arms, in which case the Gittins
decomposition result can be partially extended. Recently, [19] considered a specific model of a MAB
problem with dependent arms, where they analyzed the performance of a greedy policy and derived
asymptotic optimality results. These type of problems have recently also gained attention in the
stochastic setting [2, 10, 26] (also see [14] for the case of binary rewards), although the formulations
and techniques in that setting are very different. The broad conclusion from this body of work is
that the correlation between arms can be exploited to achieve better regret rates.

Another important difference between MAB problems and our problem is that, since any product can
be presented only once and since there is a finite number of products in any category, there is a bound
on the number of times each ‘arm’ can be pulled. Thus one cannot ‘exploit’ an arm forever and is
forced to experiment intermittently. In the special case when each category has a single product, our
problem is also related to the active sequential hypothesis testing problem [9, 20]. In this problem,
one seeks to speedily learn a hidden random variable by adaptively choosing a sequence of correlates
to observe, with a cost for each observation. This formulation would have been appropriate if our
objective was to quickly learn the user type without any concern for the relevance feedback. But
since our goal is to optimize the latter, a different approach is necessary.

1.2 Structure of the paper

The structure of the paper is as follows. In Section 2, we introduce our model and define the rele-
vance optimization problem. Section 3 is devoted to the analysis of this problem, in which we derive
key structural properties of the optimal policy and finally present an algorithm to compute it. In Sec-
tion 4 we propose two policies which are easier to compute and prove that they are approximately
optimal. In Section 5, we extensively simulate our two approximately optimal policies on randomly
generated problem instances and compare their performance to the optimal policy. Finally Section
6 summarizes our work and discusses extensions to our model. The proofs of all our results can be
found in the appendix.

3



Figure 1: A sample relevance matrix with 4 product categories (A,B,C,D) and 4 types (1,2,3,4)

2 Model

We consider the setting of a user who enters an online system and is sequentially presented with
products from different categories, with the goal of maximizing the number of relevant products
presented to him before he eventually leaves the system. Assume that there are L total products.
The products are divided into categories, with each category representing a set of similar products.
Let these categories be labeled as j ∈ {1, · · · , H} = [H]. Each category j has Lj products. A given
user considers some set of categories to be relevant to him and this set is not known a priori. The
system designer elicits explicit feedback about the relevance of a product after it is presented. This
feedback is obtained as an answer to an explicit question, is assumed to be binary, and takes value 1
(resp. 0) when the product is relevant (resp. irrelevant). We assume that this feedback is accurately
provided by the user. A product cannot be presented more than once to the same user during the
session. Hence the maximum number of products that can be shown is restricted to L.

We capture the uncertainty in the preferences of the user by assuming that the user is one of N
possible types and the actual type of the user is a latent random variable that is not observed at the
beginning of the session. Let X ∈ [N ] denote this random variable. Let pX be the corresponding
probability distribution. We assume that the system designer only knows this distribution pX . For
each user type i and for each product category j, let qij ∈ {0, 1} denote the fixed binary relevance
feedback of the user of type i to that category. The type of the user is not known, and so for each
category j, we introduce a random variable Yj ∈ {0, 1} which represents the binary feedback of a
user for any product in that category. pX induces a probability distribution on Yj :

P (Yj = 1) =

N∑
i=1

qijpX(i).

It is convenient to associate each user type i ∈ [N ] with an H-length binary vector of the {qij},
j ∈ [H] values for different categories. Hence we can define a N ×H relevance matrix Q = {qij},
whose rows represent user types, and columns represent product categories1. Figure 1 is an example
of a relevance matrix with four types of users labeled 1 to 4 and four product categories labeled A
to D. Each category has some specified number of products. For instance, type 1 finds category A
and C relevant and finds B and D irrelevant.

The number of display opportunities that are available before the user leaves the system is modeled
as a random variable C ∈ {1, 2, · · · } with a geometric probability distribution pC where pC(m) =

1Notice that type space is quite general. If for a user, there is a joint distribution over finding different
categories relevant then we can think of a user as being a convex combination of the types corresponding to the
realizations of binary relevance vectors with the associated probabilities. Also, if some variation is observed in
the feedback received for products that belong to the same category, then each of the products can be declared
as individual categories. Although this increases the problem size, our analysis remains applicable.

4



βm−1(1−β) form ≥ 1. In other words, the user dynamics in the system is modeled as a memoryless
random process, in which a user stays for each additional opportunity with probability β or exits with
probability 1 − β, independently of the past. This assumes that at least one opportunity is always
available. Finally, the random variable C is independent of the user type X . The feedback for a
product can be obtained after every display opportunity, but since the feedback for a product is the
same for every other product in its category, one can assume that the feedback is requested and
obtained only when the product presented belongs to a category that has not been shown before.

2.1 Relevance maximization

The primary objective of the system designer is to maximize the expected number of relevant prod-
ucts presented to a user in the session. Once a user enters the website, at each display opportunity,
the system designer adaptively decides which product should be shown to the user, while taking all
the user feedback obtained in the past into consideration. We define the objective formally. A policy
ψ for the designer is the sequence of maps ψ = {ψ1, · · · , ψL} where each map ψt : Ht → At is a
mapping from the set of possible observations of user feedback until time t, denoted by Ht, to the
set of possible actions At, which is the set of choices of products. Let Ψ be the set of all feasible
policies. The objective of the designer is to find a policy which maximizes the expected number of
relevant ads shown in a session under the constraint that no product is shown more than once. Let
lt denote the product chosen at time t. Once a policy ψ ∈ Ψ is chosen, lt is a well defined random
variable. With some abuse of notation, let j(lt) be its category. Then the objective of the publisher
is the following.

max
ψ∈Ψ

Eψ{Yj(lt)
},C [

C∑
t=1

Yj(lt)]

subject to
C∑
t=1

lt1{lt=l} ≤ 1 for each product l ∈ [L]. (1)

Assuming memoryless user dynamics, the optimization problem (1) takes the following form

max
ψ∈Ψ

∞∑
t=1

βt−1Eψ{Yj(lt)
}[Yj(lt)]. (2)

As mentioned earlier, this problem is a type of a Bayesian multi-armed bandit problem with cor-
related rewards (see [12, 30]) with an additional constraint on the number of times each arm may
be pulled. At a first look, one can solve this problem using the following recursive program in Al-
gorithm 1. But it is well known that such recursive algorithms can be very inefficient. The usual
problem is when recursion leads to repeating work. This happens when you have overlapping sub-
problems, which is unfortunately the case here. Turning these inefficient recursive algorithms into
efficient iterative algorithms is the role of dynamic programming. This requires us to define a state
space of possible ‘information states’ for each opportunity t, which encapsulate all the information
that has been gained till time t. In our case, the information state corresponds to a smaller relevance
matrix obtained after computing the posterior distribution on the types, by eliminating all the rows
corresponding to user types that have conditional probability 0 and all the columns corresponding to
categories that have been exhausted. The state space thus grows prohibitively large with time and its
enumeration is cumbersome. In the next section, we prove some structural properties of the optimal
policy and based on these we provide an efficient algorithm that strikes a balance between recursion
and iteration in order to compute this policy. These structural results are motivated by the following
examples.

Example: A triangular relevance matrix : Consider the relevance matrix shown in Figure 2. A
quick circumspection convinces us that the optimal policy is one which shows the categories in the
order A, B, C and then D. If a positive feedback is obtained for a category then all the advertisers in
that category are exhausted. To see this, observe that this policy attains the optimal payoff obtained
in the case that the type of the user is known at arrival. Structurally, there is a partial order relation
on the categories where one category ‘dominates’ the other if the set of types which find it relevant
is a strict subset of the set of types which finds the other relevant. This example shows that if this
partial order relation leads to a complete ordering of the categories then the optimal policy simply
presents the categories according to this order. But what if that is not the case? In lemma 2, we prove

5



Algorithm 1 (Optimal) Function [V (Q, p, β), A(Q, p, β)] where Q is a relevance matrix and p is a
probability distribution over user types.

• If Q is empty, return V (Q, p, β) = 0.
• For a category j, let Mj denote the set of user types which find j relevant and let P (Mj) =
P (X ∈Mj). Also let Qj be the matrix obtained after removing the column corresponding
to category j and the rows corresponding to all the user types in M c

j and let Qjres be
the matrix obtained after removing the column corresponding to category j and the rows
corresponding to all the user types in Mj . Finally, let pj denote the distribution on the user
types conditional on the event {X ∈ Mj} and pjres be the distribution on the user types
conditional on {X ∈M c

j }.
• Then define

V j = P (Mj)

(
1− βLj

1− β
+ βLjV (Qj , pj , β)

)
+(1− P (Mj))βV (Qjres, p

j
res, β)

• Return
V (Q, p, β) = max

j
V j

A(Q, p, β) ∈ arg max
j
V j

Figure 2: A triangular relevance matrix. The optimal policy is to present categories in the order A,
B, C and then D.

an appropriate generalization of this property for arbitrary relevance matrices using a probabilistic
interchange argument. We show that if a category dominates some other then in the optimal policy
it is presented before the other.

Example: A permutation relevance matrix : Consider the relevance matrix shown in Figure 3.
One can argue that in this case the optimal policy is greedy: choose the category with the maximum
expected number of relevant ads. In fact, if the relevance matrix is a permutation of smaller block
matrices, with multiple categories in each, we can consider the relevance optimization problem for
each of the smaller blocks separately and greedily choose the order in which these blocks are chosen.

3 Characteristics of the optimal allocation policy

In this section we present some structural properties of the optimal allocation policy.

6



Figure 3: A diagonal relevance matrix. The greedy policy is optimal.

3.1 Property 1: If category A is relevant, show it

We first present the following intuitive property.

Lemma 3.1. In the optimal allocation policy, at any opportunity, conditional on the past observa-
tions, if there exists a product category j that will generate a positive feedback with probability 1,
i.e. P (Yj = 1 | Ht) = 1, then any product in j that has not been shown is allotted immediately. If
there are multiple such products then they can be allotted in any order.

This property implies that if a positive feedback is received for a product belonging to a particular
category j, then all Lj products of that category are scheduled to be presented in the immediately
following opportunities2. The proof uses a simple probabilistic interchange argument.

3.2 Property 2: If ‘likes A’ implies ‘likes B’, then show B before showing A

To describe this next property, we first formally define a few ideas. In the dynamic allocation
of products to the opportunities, we call an opportunity t to be an experimentation opportunity if
conditional on information obtained until time t − 1, there is not a single category j such that
Yj = 1 with probability 1. If there existed such a category, the previous lemma tells us to exhaust all
the advertisers in that category. But since there is no such category, an experimentation opportunity
brings to us the non-trivial problem of deciding which category to present to the user next. Thus all
the non-trivial decisions in the optimal dynamic allocation policy are taken at the experimentation
opportunities. Let S(t) = {i ∈ [N ] : P (X = i | Ht) > 0} be the set of user types that have a
non-zero probability conditional on the history. Then note that after observing the feedback from
the allocation made at an experimentation opportunity S(t− 1)− S(t) ≥ 1. Let E(t) be the set of
categories available i.e. which have not been presented till opportunity t. Let Q(t) be the relevance
matrix with rows corresponding to the types in S(t) and the columns corresponding to the categories
in E(t). Finally, for each category j in E(t), let Mj(t) = {i ∈ S(t) : qij = 1}, which is the set of
user types in S(t) which find category j relevant.

Definition 3.1. We say that category j dominates category j′ at opportunity t if Mj′(t) ⊂ Mj(t).
The categories that are not dominated by any other category are called non-dominated categories.

For instance in Figure 1, A, C and D are the only non-dominated categories since A dominates B.
Then we show the following.

Lemma 3.2. In the optimal allocation policy, at any experimentation opportunity, the product pre-
sented must be of a non-dominated category.

2In order to not bore the user, we can introduce a bound on the number of products of the same category
that can be successively shown to the user.

7



In other words, this lemma says that if the set of user types which find category A relevant is
contained in the set of user types which find category B relevant, then in the optimal policy, category
B is presented before category A. The proof of this lemma also uses a probabilistic interchange
argument. Observe that the claim in the lemma is not an intuitively obvious fact. One may argue
that in some cases, presenting a category that is dominated may help us learn the true user type faster
and thus perform a better allocation in the future opportunities. Indeed if the goal is to minimize the
expected number of opportunities taken to learn the user type exactly, then this property clearly does
not hold (e.g. presenting a category that every user type finds relevant gives no information about
the true type).

Now let U(t) be a generic class of non-dominated categories that satisfy the condition that Mj(t) =
Mj′(t) for all j, j′ ∈ U(t). This means that U(t) is a class of categories found relevant by ex-
actly same set of types. U(t) will be called a non-dominated equivalence class of categories and
MU(t) denotes the set of types which find the class U(t) relevant. We allow for a class to be
singleton in the definition and so suppose there are K(t) such non-dominated equivalence classes
{U1, · · · , UK(t)} that partition the set of non-dominated categories in the relevance matrix. Let this
set of non-dominated equivalence classes of categories be denoted by U(t). If furthermore the sets of
types {MU1 , · · · ,MUK(t)

} are mutually disjoint, then we say that the set of non-dominated equiva-
lence classes partition the type space. In this case, the relevance matrix can be represented as a block
diagonal matrix composed of K(t) smaller block matrices (up to permutation of the K(t) blocks),
with each block matrix corresponding to an equivalent non-dominated class. Such a small block is
composed of columns of all 1s, one for each category in the class, and columns corresponding to the
categories that the class dominates.

As products are presented and we recompute the relevance matrix after each feedback, we may
lose non-dominated categories or new categories may become non-dominated. Thus the set of non-
dominated equivalence classes will change. But in the case where new categories are added to a
class of non-dominated categories, we want to be able to identify the new class with the old class.
This can be done since the categories in an equivalence class in the relevance matrix at the first
display opportunity will continue to remain in the same class as long as they are non-dominated
and they have not been presented. Thus a class U in subsequent display opportunities is identified
by equivalence to the set of categories in U at the first display opportunity. For example, in the
relevance matrix in Figure 1, as mentioned before U1 = {A}, U2 = {C} and U3 = {D} are the
non-dominated categories at the first opportunity. Suppose C is presented and a negative feedback
is received. Then in the new relevance matrix obtained after deleting rows corresponding to type
1 and type 4, and column corresponding to category C, the only remaining non-dominated class is
{A,B}. In this case we identify {A,B} with U1, which was the class that contained A in the first
opportunity. Similarly if you present A initially and get a negative feedback, then {C,D} is left as
the only non-dominated equivalence class, which is a result of merging classes {C} and {D}. In
this case the new class is identified with any of the original classes U2 or U3. This brings us to the
following property of any relevance matrix that can be easily verified.

Lemma 3.3. Consider a relevance matrix with an initial set of non-dominated classes of categories
U. Suppose that a category from a class U ∈ U is presented. Suppose that a negative feedback is
received for this category, and consider the new relevance matrix obtained after deleting the rows
corresponding to user types that find the presented category not relevant and the column correspond-
ing to the presented category. Then the new set of non-dominated equivalence classes of categories
U′ satisfies U′ ⊂ U.

Intuitively this is because, when a negative feedback is obtained at some opportunity t, the rows
corresponding to the user types that provide positive feedback to the shown category get deleted and
thus it cannot happen that a category that was dominated at opportunity t becomes non-dominated
at t + 1. On the other hand, after a positive feedback, completely new non-dominated equivalence
classes can appear in the new relevance matrix computed after the posterior update. For example if
A is presented and a positive feedback is received, the new relevance matrix has positive probability
only on types 1, 2 and 3. In that case, D is dominated by B and hence ({B},{C}) is the new set
of non-dominated equivalence classes (they are not equivalent), where notice that {B} appears as a
new (singleton) class.

8



3.3 Structure of the optimal policy

The lemmas 3.1, 3.2 and 3.3 reveal the following structure of the optimal policy. Beginning from
a set of non-dominated equivalence classes of categories, these classes are presented in a certain
order as long as we keep getting a negative feedback. If any class obtains a positive feedback in the
process, then we present all the products in that class, ‘zoom in’ to the next level (eliminating all
the other types from the relevance matrix) and restart with a new set of non-dominated equivalence
classes. Utilizing this structure, the following Algorithm 2 computes the optimal payoff.

Algorithm 2 (Optimal) Function V (Q, p, β) where Q is a relevance matrix and p is a probability
distribution over user types.

• If Q is empty, return V (Q, p, β) = 0.
• If Q is non-empty, enumerate the non-dominated equivalence classes of Q. Let them

be (U1, · · · , UK). Calculate the number of products in each class, denoted by Lk =∑
j∈Uk

Lj .

• For each k = 1, · · · ,K, and each π ⊂ {1, · · · ,K} such that k /∈ π, let ω(π, k) be the
event {X ∈ S(π, k)} where

S(π, k)

= {i ∈ N : qij = 0∀ j ∈ Us, s ∈ π and qij = 1∀ j ∈ Uk}.
S(π, k) is thus the set of user types that find all the classes with labels in π irrelevant,
but find the class Uk relevant. Let Qπk be the relevance matrix obtained from deleting all
the rows corresponding to user types in S(π, k)c and all columns corresponding to the
categories in the classes in π and the categories in k. Finally, let pπk be the probability
distribution on the user types conditional on the event ω(π, k). Then define

V πk = P (ω(π, k))

(
1− βLk

1− β
+ βL

k

V (Qπk , p
π
k , β)

)
.

• Return
V (Q, p, β) = OPT ,

max
k1,··· ,kK∈σ(1,··· ,K)

Vk1 + βV k1k2 + · · ·+ βK−1V
k1,··· ,kK−1

kK
. (3)

Here σ(1, · · · ,K) is the set of permutations of the K non-dominated equivalence classes.

The optimization problem (3), is defined on the domain of all the possible orderings of the non-
dominated equivalence classes of categories in Q3. This problem can be solved more efficiently
using dynamic programming as opposed to comparing all the possible K! orderings. One can define
the state of the program at step r as the set of classes {k1, k2, · · · , kr} that have been presented till
step r. A substantial reduction in the state space comes from the fact that Qπr

k for any k does not
depend on the order in which the classes in πr were presented, and hence the state of the program at
any step needs to only remember this set. Thus the size of the state space is

(
K
1

)
+
(
K
2

)
+ · · ·+

(
K
K

)
=

2K .

At each state at step r, in the worst case,K−r number of sub-programs need to be called to evaluate
the set of payoff-to-go corresponding to the classes that have not been presented, i.e. {V (Qπr

k ) :
k /∈ πr} Thus at each level in the recursive program, the number of sub-programs that are called
is exponential in the number of non-dominated equivalence classes at that level in the worst case.
Considering this, we turn to find good heuristic policies that are easier to compute.

3Note that if for some order, conditional on a sequence of classes getting negative feedback, if some class
that is next in the order is dominated, then that order will simply not be chosen as the optimal order.

9



4 Approximately optimal policies

4.1 Policy 1: Farsighted Greedy

Consider the optimization problem (3) assuming that we have been given V (Qπk ) for each k =
1, · · · ,K, and each π ⊂ {1, · · · ,K} such that k /∈ π. Now suppose that instead of optimally
solving (3), we adopt the following ‘greedy’ policy. We iteratively define

k∗s = arg max{V k
∗
1 ,··· ,k

∗
s−1

i : i ∈ {1, · · · ,K} \ {k∗1 , · · · , k∗s−1}}
for s = 1, · · · ,K. This policy assumes that the payoff-to-go from the ‘next level’ onwards is given.
But since it is not, we recursively compute an approximation to this payoff-to-go by assuming that
we will follow the same greedy strategy in all the subsequent levels of the optimization problem.
Algorithm 3 computes the proposed policy and its payoff.

Algorithm 3 (Farsighted greedy): Function W (Q, p, β) where Q is a relevance matrix and p is a
probability distribution over user types.

• If Q is empty, return W (Q, p, β) = 0.
• If Q is non-empty, enumerate the non-dominated equivalence classes of Q. Let them

be (U1, · · · , UK). Calculate the number of products in each class, denoted by Lk =∑
j∈Uk

Lj .

• Let the event ω(π, k) be as defined in Algorithm 2. Similarly define Qπk and pπk .
• Iteratively compute

k∗s = arg max{W k∗1 ,··· ,k
∗
s−1

i : i ∈ {1, · · · ,K} \ {k∗1 , · · · , k∗s−1}} (4)

where

Wπ
k = P (ω(π, k))

(
1− βLk

1− β
+ βL

k

W (Qπk , p
π
k , β)

)
.

• Return
W (Q, p, β) = Wk∗1

+ βW
k∗1
k∗2

+ · · ·+ βK−1W
k∗1 ,··· ,k

∗
K−1

k∗K
.

Note the computational savings as compared to the algorithm for computing the optimal policy. The
comparison in equation (4) when s classes have been presented already is overK−s possibilities in
the worst case. Thus the number of times a sub-program is called isK+(K−1)+(K−2)+· · ·+1 =
K(K+1)

2 . Thus at each level in this recursive program, the number of sub-programs that are called
is quadratic in the number of equivalence classes at that level. We can then prove the following
performance guarantee for this policy.
Theorem 4.1. LetLmin = minj∈1,··· ,H Lj be the minimum number of products in any category and
let H be the total number of categories. The farsighted greedy algorithm achieves 1−βLmin

1+β−βH−βLmin

factor of the optimal payoff.

Note that the worst case is when H is large and Lmin = 1, in which case the adaptive greedy policy
achieves a 1− β factor of the optimal payoff. The key idea of the proof is as follows. The departure
from optimality at any level has two sources: the fact that the payoff-to-go from the next level
onwards is an approximation to the optimal payoff-to-go, and the order in which the non-dominated
classes are presented in the current level is chosen greedily. If one assumes that the ratio of the
approximation to the optimal payoff-to-go and the optimal payoff-to-go at the next level is some γ,
and if one can quantify the departure from optimality of the greedy policy at the current level, one
can compute a bound for the worst case ratio of the current payoff-to-go and the optimal current
payoff-to-go as some γ′ = f(γ). One can show that this operator is a contraction. Thus one can
recursively find a sequence of lower bounds that are uniformly bounded below by the fixed point of
this sequence, which is the quantity in the theorem.

Note that the description of Algorithm 3 can be simplified by fully exploiting its recursive structure;
we presented it in the current form to show the correspondence to Algorithm 2 and also to facilitate

10



the argument in the proof of Theorem 4.1. The equivalent implementation can be found in the
appendix.

4.2 Policy 2: Naive Greedy

Another simple heuristic that we can use is the following greedy policy.

Policy (Naive Greedy) Let the set of non-dominated equivalence classes at an experimentation
opportunity t be (U1(t), · · · , UK(t)), and (L1(t), · · · , LK(t)) be the number of products in each of
these classes. Then choose a product from a class k∗ where

k∗ ∈ arg max
k∈{1,··· ,K}

1− βLk(t)

1− β
P (X ∈MUk(t) | Ht).

We then have the following theorem.

Theorem 4.2. The Naive Greedy policy achieves 1−βLmin

1+β−βH factor of the optimal payoff.

Note that in the worst case, when Lmin = 1 and H is large, the greedy algorithm achieves at least
1−β
1+β factor of the optimal payoff. The proof of this theorem is similar to that of Theorem 4.1.

4.3 A lower bound for β close to 1

We can also obtain a lower bound on the ratio of payoffs under either of the heuristic algorithms and
the optimal algorithm for values of β close to 1. Intuitively, this follows from the observation that
if user stays for long enough so that the number of ad opportunities available is greater than L, then
any policy obtains all the positive feedback that one can possibly obtain.

Theorem 4.3. Any feasible policy attains βL−1 factor of the optimal payoff.

5 Simulations

In this section we compare the performance of the the greedy with foresight policy and the naive
greedy policy with the optimal policy. We generate 50 random samples each of 5 × 5 and 7 × 7
relevance matrices with associated randomly chosen priors. We compute the payoff under all the
three policies, for β ranging from 0 to 1. For each β, we then plot the average and the minimum
across the 50 samples of the ratio of the payoff under a non-optimal policy and the optimal policy.
Our results are shown in Figure 4.

Note that both the policies perform very close to optimal even in the worst case across the samples.
Also, observe that for β close to 0 and for β close to 1, the payoff under both the policies approach
the optimal payoff, which corroborates our bounds in theorems 4.1, 4.2 and 4.3. The curve corre-
sponding to the naive greedy policy is smooth because the policy does not depend on β and hence
the resulting payoff is continuous in β (and so is the optimal payoff).

6 Discussion and Conclusions

Our main contribution in this paper is the introduction and analysis of the sequential relevance max-
imization problem with binary feedback. This problem naturally arises in several settings where a
designer needs to adaptively make a sequence of suggestions to a user while learning his prefer-
ences from his feedback. This basic framework is amenable to extensions that adapt our approach
to a more practical setting where some of our assumptions may not hold. For example, we assume
that the number of display opportunities in a session is independent of both the type of the user and
the relevance feedback, which may not hold in practice. For example, a user may be more likely to
leave sooner if he is consecutively shown irrelevant products. Also, one of our central assumptions
is that the user feedback is binary, but in practice one may benefit from a more fine-grained feedback

11



0 0.5 1
0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

 

 

FSG/OPT

NG/OPT

(a) 5× 5 (average)

0 0.5 1

0.92

0.94

0.96

0.98

1

 

 

FSG/OPT

NG/OPT

(b) 5× 5 (minimum)

0 0.5 1
0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

 

 

FSG/OPT

NG/OPT

(c) 7× 7 (average)

0 0.5 1
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

 

 

FSG/OPT

NG/OPT

(d) 7× 7 (minimum)

Figure 4: Average and worst case ratios of payoffs under either of the heuristic policies and the
optimal policy across 50 samples.

from the user. For example, the user may convey a rating for the product which may be a number
from 0 to 5. In this case, one would want to maximize the sum of ratings obtained for the products
shown in a session. Another interesting extension is to incorporate the values of the products so
that one maximizes the total value of relevant products shown to a user in a session. We leave these
extensions for future work.
User type and personalization: In the current era of personalization of web services, it is impor-
tant that a recommendation system be sensitive to the transience in the preferences of the users. For
example, a user’s preference for music can change every day, depending on her mood, company
etc. A sequential optimization approach to generating recommendations can proactively learn these
changes in user preferences by freshly eliciting relevance feedback for carefully chosen products,
each time the user enters the system.

In the model that we have considered in this paper, the type of a user captures her preferences for
the session under consideration and the prior distribution over these types is assumed to be known
to the system designer. One interpretation of this distribution is that it captures the preferences of a
‘typical’ user in the population, and it is estimated from the observed behavior of all the past users.
In another interpretation aligned with the notion of personalization, one can think of this distribution
as capturing the variation in the preferences of the same user over multiple sessions. For example,
in a naive interpretation, one can imagine that the type captures the ‘mood’ of a person, which is
sampled independently everyday, and her preferences for music on a particular day depends on her
mood on that day. Even more generally, there could be cross-temporal dependencies in these types.
If one desires to optimize the performance of the recommendation process over multiple sessions,
one needs to also estimate this type evolution process. We leave these considerations for future
work.

References

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engi-
neering, IEEE Transactions on, 17(6):734–749, 2005.

12



[2] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. The Journal of
Machine Learning Research, 3:397–422, 2003.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

[4] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative recommendation.
Communications of the ACM, 40(3):66–72, 1997.

[5] Thorsten Bohnenberger and Anthony Jameson. When policies are better than plans: Decision-
theoretic planning of recommendation sequences. In Proceedings of the 6th international
conference on Intelligent user interfaces, pages 21–24. ACM, 2001.

[6] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in
artificial intelligence, pages 43–52. Morgan Kaufmann Publishers Inc., 1998.

[7] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. arXiv preprint arXiv:1204.5721, 2012.

[8] Robin Burke. Hybrid recommender systems: Survey and experiments. User modeling and
user-adapted interaction, 12(4):331–370, 2002.

[9] Herman Chernoff. Sequential design of experiments. The Annals of Mathematical Statistics,
pages 755–770, 1959.

[10] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under
bandit feedback. Proceedings of the 21st Annual Conference on Learning Theory (COLT),
2008.

[11] Dorian Feldman et al. Contributions to the” two-armed bandit” problem. The Annals of Math-
ematical Statistics, 33(3):847–856, 1962.

[12] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation indices.
Wiley Online Library, 1989.

[13] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Evaluating col-
laborative filtering recommender systems. ACM Transactions on Information Systems (TOIS),
22(1):5–53, 2004.

[14] Chong Jiang and R Srikant. Parametrized stochastic multi-armed bandits with binary rewards.
In American Control Conference (ACC), 2011, pages 119–124. IEEE, 2011.

[15] Robert Keener. Further contributions to the” two-armed bandit” problem. The Annals of
Statistics, pages 418–422, 1985.

[16] Tze Leung Lai. Adaptive treatment allocation and the multi-armed bandit problem. The Annals
of Statistics, pages 1091–1114, 1987.

[17] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 6(1):4–22, 1985.

[18] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based recommender sys-
tems: State of the art and trends. In Recommender systems handbook, pages 73–105. Springer,
2011.

[19] Adam J Mersereau, Paat Rusmevichientong, and John N Tsitsiklis. A structured multiarmed
bandit problem and the greedy policy. Automatic Control, IEEE Transactions on, 54(12):2787–
2802, 2009.

[20] Mohammad Naghshvar, Tara Javidi, et al. Active sequential hypothesis testing. The Annals of
Statistics, 41(6):2703–2738, 2013.

[21] Sandeep Pandey, Deepayan Chakrabarti, and Deepak Agarwal. Multi-armed bandit problems
with dependent arms. In Proceedings of the 24th international conference on Machine learn-
ing, pages 721–728. ACM, 2007.

[22] Michael J Pazzani and Daniel Billsus. Content-based recommendation systems. In The adap-
tive web, pages 325–341. Springer, 2007.

[23] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming,
volume 414. John Wiley & Sons, 2009.

13



[24] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grou-
plens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994
ACM conference on Computer supported cooperative work, pages 175–186. ACM, 1994.

[25] Paul Resnick and Hal R Varian. Recommender systems. Communications of the ACM,
40(3):56–58, 1997.

[26] Paat Rusmevichientong and John N. Tsitsiklis. Linearly parameterized bandits. Math. Oper.
Res., 35(2):395–411, May 2010.

[27] J Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems in e-commerce. In
Proceedings of the 1st ACM conference on Electronic commerce, pages 158–166. ACM, 1999.

[28] Guy Shani, Ronen I Brafman, and David Heckerman. An mdp-based recommender system.
In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pages
453–460. Morgan Kaufmann Publishers Inc., 2002.

[29] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, pages 285–294, 1933.

[30] Peter Whittle. Multi-armed bandits and the gittins index. Journal of the Royal Statistical
Society. Series B (Methodological), pages 143–149, 1980.

7 Appendix

7.1 Proof of lemma 3.1

Proof. The result follows from a simple interchange argument. Suppose at time t, the posterior
distribution over the set of possible types is {P (X = i | Ht)} = (p1

t , · · · , pNt ) and the set of
remaining products is A(t). Consider the event W with a fixed realization of the user type X = i
and a fixed realization of the random variable C = c, which is the time at which the user leaves.
Thus on this event, the string of binary feedback for the different categories is {qij : j ∈ [H]}. Then
for any fixed policy ψ′, the sequence of allocations of the products from time t onwards till time c
is dictated by the policy and is determinate. Let this sequence of allocations be {lt, lt+1, · · · , lc}
and the corresponding sequence of feedback be {yj(lt), yj(lt+1), · · · , yj(lc)}. Suppose there exists
an advertiser l∗ ∈ A(t) such that, conditional on observations till time t− 1, Yj(l∗) = 1 w.p. 1. We
now consider 2 cases:
Case 1 : assume that on event W , for policy ψ′, l∗ ∈ {lt, lt+1, · · · , lc}. Say lt′ = l∗ for t′ ∈
{t, · · · , c}. Then if t′ 6= t, we will construct a policy which generates the sequence of allocations
{l∗, lt, · · · , lt′−1, lt′+1, · · · , lc} and thus give the same payoff on event W . This policy ψ is the
following:

1. Allot advertiser l∗ at time t.

2. from time t+ 1 onwards follow policy ψ′ assuming Ht+1 = Ht

3. When ψ′ prescribes allotting l∗ at time t′ + 1, use the information yl∗ = 1 to update the
history toHt′+1 and remove l∗ from the set of available advertisers. Follow the prescription
of ψ′ for allotting advertisers from t′ + 1 and onwards.

Clearly, this policy gives the same payoff on event W since only the time at which l∗ is allotted has
been interchanged.
Case 2 : assume that on eventW , for policy ψ′, l∗ /∈ {lt, lt+1, · · · , lc}. Then observe that the policy
ψ described above generates sequence of allocations {l∗, lt, lt+1, · · · , lc−1}. Thus the difference in
payoff is given by

Yj(l∗) − Yj(lc) = 1− Yj(lc) ≥ 0

Thus the number of relevant ads shown under policy ψ is at least as high as that under policy ψ for
every such event W from a set of disjoint events whose union is the entire probability space. Thus
the expected number of relevant ads shown is also at least as high.

14



7.2 Proof of lemma 3.2

Proof. The proof uses a probabilistic interchange argument. Suppose that at opportunity t, the
optimal policy ψ′ allots a product l′ of category j′ while there exists a category j such that
Mj′(t) ⊂ Mj(t). Let l be any generic product of category j. Now consider a policy ψ which allots
category j before category j′ by allotting product l at opportunity t. To further describe this policy,
we consider two cases:

(A) If the user finds j relevant, it exhausts all the products in that category and then moves on
to allotting j′. After it allots j′ it behaves as if j was never allotted until ψ′ prescribes
allotting j, upon which the designer updates the information that j is relevant and moves
on to allot the next category prescribed by ψ′ and so on.

(B) If the user finds j not relevant, then from time t+1 onwards it acts as if it allotted j′ at time
t and found that j′ is not relevant. Then when ψ′ prescribes allotting j, the designer updates
the information that j is not relevant and moves on to allot the next category prescribed by
ψ′ and so on.

We will show that on every disjoint event of the underlying probability space, the system designer
shows at least as many relevant products by following policy ψ instead of ψ′. Consider an event
W on which the user leaves after opportunity c ≥ t and on which the realization of the user
type is X = i. Then for the policy ψ′, the sequence of allocations of the products from time t
onwards until time c is dictated by the policy and is determinate. Let this sequence of allocations
be {lt, lt+1, · · · , lc} and the corresponding sequence of feedback be {yj(lt), yj(lt+1), · · · , yj(lc)}.
These allocations and feedback depend on the type i that was realized on W . For this, we consider
3 mutually exclusive and exhaustive cases:

Case 1: We first consider the case where on the event W , X = i ∈ Mj′(t). Then observe
that yj(lt) = yj(l′) = 1 and immediately the designer deduces that Yj = Yj′ = 1. Thus since
ψ is optimal, by the previous lemma w.l.o.g. the first Lj′ + Lj allocations in the sequence
{lt, lt+1, · · · , lc} can be assumed to be all the advertisers belonging to categories j′ and j and thus
the feedback is a sequence of Lj′ + Lj 1s. Note that policy ψ will be operating under case (A) and
thus it will also generate a sequence of allocations in which the first Lj′ + Lj allocations in the
sequence {lt, lt+1, · · · , lc} will be all the products belonging to categories j′ and j (in a different
order) and after that the rest of the sequence of allocations is identical to that under ψ′. Thus on
such an event W both the policies ψ′ and ψ generate the same sequence of relevance feedback.

Case 2: Let us now consider the case where on the event W , X = i ∈ Mj(t) − Mj′(t).
In this case yj(lt) = yj(l′) = 0 but Yj = 1. In this case the policy ψ′ generates the sequence of
allocations {l′, lt+1, · · · , lc} and gets the feedback {0, yj(lt+1), · · · , yj(lc)}. Where as observe that
the policy ψ operates under case (1) and the designer discovers that Yj = 1 by allotting l and
then continues to exhaust all the products in j before switching to the prescriptions of ψ′. Thus
ψ generates a sequence of allocations in which all the products in j are allotted first and then the
prescription of ψ′ is followed as described in case (A). In the case where ψ′ prescribed allotting
j at some opportunity and was able to allot all the products in j until the final opportunity c, this
leads to a sequence of allocations which is just a different ordering of the elements of the sequence
{l′, lt+1, · · · , lc} and thus generates the same number of relevant products shown until time c. In
the case where ψ′ allotted 0 ≤ r < Lj products of category j up until the final opportunity c, then
under policy ψ, the last Lj − r products in the sequence {0, yj(lt+1), · · · , yj(lc)} are dropped out in
lieu of the same number of products in category j in the beginning. But since all products in j are
relevant, this number of relevant ads under policy ψ is still at least as high as that under ψ′.

Case 3: Now consider the case where on the event W , X = i ∈ S(t) − Mj(t). In this
case yj(lt) = yj(l′) = 0 and also Yj = 0. Thus the policy ψ′ generates the sequence of allocations
{l′, lt+1, · · · , lc} and gets the feedback {0, yj(lt+1), · · · , yj(lc)}. In this case ψ operates under case
(B). Now in the case where l 6∈ {l′, lt+1, · · · , lc} for any product l in category j, ψ generates the
same sequence of feedback {0, yj(lt+1), · · · , yj(lc)}. In the case where l ∈ {l′, lt+1, · · · , lc} for
some product l in category j, then under ψ′, since j has already been tested in the beginning, the

15



negative feedback of category j is not repeated by re-allotting it. In lieu of that the policy moves on
and a new feedback is obtained at the end which lay be 1 or 0. Thus ψ generates at least as many
relevant recommendations as ψ′.

Thus the number of relevant products shown under policy ψ is at least as high as that under policy
ψ′ for every such event W from a set of disjoint events whose union is the entire probability space.
Thus the expected number of relevant products shown is also at least as high.

7.3 Proof of Theorem 4.1

Proof. First note that if the relevance matrix Q is such that all the categories form a single non-
dominated equivalence class, then the farsighted greedy policy is the same as the optimal policy
and so W (Q, p, β) = V (Q, p, β). Now consider an experimentation opportunity with an associated
relevance matrix Q that has K non-dominated equivalence classes (U1, · · · , UK). Further assume
that there is some factor 0 < γ < 1 such that

W (Qπk , p
π
k , β)

V (Qπk , p
π
k , β)

≥ γ

for each k = 1, · · · ,K, and each π ⊂ {1, · · · ,K} such that k /∈ π. Now we have

V πk = P (ω(π, k))(
1− βLk

1− β
+ βL

k

V (Qπk , p
π
k , β))

and

Wπ
k = P (ω(π, k))(

1− βLk

1− β
+ βL

k

W (Qπk , p
π
k , β))

≥ P (ω(π, k))(
1− βLk

1− β
+ γβL

k

V (Qπk , p
π
k , β)). (5)

We thus have

Wπ
k

V πk
≥

1−βLk

1−β + γβL
k

V (Qπk , p
π
k , β)

1−βLk

1−β + βLkV (Qπk , p
π
k , β)

(6)

Now it can be easily verified that for a positive constant c, the function f(u) = c+γu
c+u is strictly

decreasing in u. Thus, since V (Qπk , p
π
k , β) ≤ 1

1−β , we have that

Wπ
k

V πk
≥

1−βLk

1−β + γβLk

1−β
1−βLk

1−β + βLk

1−β

= 1− (1− γ)βL
k

≥ 1− (1− γ)βL
min

(7)

where Lmin = mink L
k. This bound holds uniformly for each k = 1, · · · ,K, and each π ⊂

{1, · · · ,K} such that k /∈ π. Now if we define

OPT ′ ,

max
k1,··· ,kK∈σ(1,··· ,K)

Wk1 + βW k1
k2

+ · · ·+ βK−1W
k1,··· ,kK−1

kK
, (8)

then from (7), one can easily show that OPT ′

V (Q,p,β) ≥ 1− (1− γ)βL
min

. Now we will show that the
farsighted greedy algorithm attains 1

1+β−βK factor of OPT ′. To show this we will use induction
in the dynamic programming problem that solves (8). Let αi be the lower bound on the ratio of
the payoff to go under the greedy policy and that under the optimal policy when the number of
classes left is i where i varies from 1 to K in the problem (8). We are interested in proving that
αK ≥ 1

1+β−βK . Now if k1, · · · , kK−1 is decided then there is only one option left for kK and
hence the greedy policy gives the same payoff as the optimal payoff to go. Thus α1 = 1. Now fix
an i ≥ 2 and consider the payoff to go under the optimal policy when K − i classes in the order

16



have been selected. Let the set of these classes already selected be denoted by labels in π and denote
this optimal payoff to go by GπOPT ′ . Denote the payoff to go under the greedy policy by Gπg . Let
the class selected by the greedy policy next be Uk for k ∈ {1, · · · ,K} \ π. Then we have by the
definition of αi−1:

Gπg = Wπ
k + βGπ∪kg ≥Wπ

k + βαi−1G
π∪k
OPT ′ (9)

Now first we have
GπOPT ′ = max

j∈1,··· ,K\π
Wπ
j + βGπ∪jOPT ′ . (10)

Suppose now that a genie reveals the feedback for a class Uk for free at this point. Then the optimal
payoff under this new information is higher than the optimal payoff if this information is not avail-
able, i.e. GπOPT ′ (because one can always choose to ignore the genie). Denote this optimal payoff
under the new information structure as ḠπOPT ′ . Then under this new information, clearly if it is
revealed that the feedback for Uk is positive then one exhausts all the advertisers in Uk, where as if
the feedback is negative then one removes Uk from the set of classes and moves on without wasting
any opportunity on testing Uk. Thus

ḠπOPT ′ = Wπ
k +Gπ∪kOPT ′ ≥ GπOPT ′ . (11)

And we thus have
Gπ∪kOPT ′ ≥ GπOPT ′ −Wπ

k . (12)
Substituting (12) in (9) we have

Gπg ≥ Wπ
k + βαi−1(GπOPT ′ −Wπ

k )

= Wπ
k (1− βαi−1) + βαi−1G

π
OPT ′ (13)

Further observe that since the greedy policy chooses k, we have GπOPT ′ ≤ Wπ
k

1−βi

1−β or Wπ
k ≥

GπOPT ′
1−β
1−βi and thus we have

αi =
Gπg

GπOPT ′
≥ (1− β)(1− βαi−1)

1− βi
+ βαi−1

≥ (1− β)(1− βαi−1)

1− βK
+ βαi−1.

Here the second inequality follows since i ≤ K. Now consider the recurrence equation

αi =
(1− β)(1− βαi−1)

1− βK
+ βαi−1. (14)

We have that αi ≤ αi−1 for αi−1 ≥ 1
1+β−βK and hence the sequence {αi} generated by the

recurrence relation, with α1 = 1 is decreasing as long as αi ≥ 1
1+β−βK . Further, we can verify that

for αi−1 ≥ 1
1+β−βK , we have

αi−1 − αi = αi−1(1− β)− (1− β)(1− βαi−1)

1− βK

≤ αi−1 −
1

1 + β − βK
.

Thus we can conclude that the sequence {αi} is uniformly bounded below by α∗ = 1
1+β−βK which

is the fixed point of the recurrence equation. Thus we have that αK ≥ 1
1+β−βK which is what we

desired to prove.

Thus after combining the bounds, we have that

W (Q, p, β)

V (Q, p, β)
≥ 1− (1− γ)βL

min

1 + β − βK
. (15)

Let Lmin be the minimum number of products in any category in L, i.e. Lmin = minj=1,··· ,H Lj .
Now since Lmin ≤ Lmin and K ≤ H , which is the total number of categories, we have the
following bound that holds irrespective of the relevance matrix Q at any given level:

W (Q, p, β)

V (Q, p, β)
≥ 1− (1− γ)βLmin

1 + β − βH
. (16)

17



Now let γ1 = 1 and for i ≥ 2 consider the recurrence equation

γi =
1− (1− γi−1)βLmin

1 + β − βH
. (17)

Now γi ≤ γi−1 as long as γi−1 ≥ 1−βLmin

1+β−βH−βLmin
. Further we can verify that for γi−1 ≥

1−βLmin

1+β−βH−βLmin
,

γi−1 − γi = γi−1 −
1− (1− γi−1)βLmin

1 + β − βH

≤ γi−1 −
1− βLmin

1 + β − βH − βLmin

We can thus conclude that the sequence {γi} is uniformly bounded below by γ∗ = 1−βLmin

1+β−βH−βLmin

which is the fixed point of the recurrence relation. Thus for any (Q, p, β),

W (Q, p, β)

V (Q, p, β)
≥ 1− βLmin

1 + β − βH − βLmin
. (18)

7.4 Proof of Theorem 4.2

Proof. Consider the set (U1, · · · , UK) of the non-dominated classes of ad categories at the first
experimentation opportunity. From the dynamic programming equation (3) we have

V πk = P (ω(π, k))(
1− βLk

1− β
+ βL

k

V
π

k ).

Here Lk as defined before are the number of ads in class k and V
π

k is the optimal payoff-to-go
conditional on the event E given that class k is also used up. We will approximate this payoff by µπk
defined as

µπk = P (ω(π, k))(
1− βLk

1− β
).

Note that under the greedy policy, k is chosen to maximize µπk . The ratio of the two quantities is

µπk
V πk

=

1−βLk

1−β
1−βLk

1−β + βLkV
π

k

≥ 1− βL
k

≥ 1− βL
min

. (19)

Where the first inequality follows since βL
k

V
π

k ≤
βLk

1−β and second follows from the definition of
Lmin, since lemma 3.3 says that the number of ads in a class can only grow. We will later show in an
example that for our greedy policy, this bound is tight. Now the optimal policy finds the best order
in which to present the non-dominated equivalence classes which solves the following optimization
problem.

OPT , max
k1,··· ,kK

Vk1 + βV k1k2 + β2V k1,k2k3
+ · · ·+ βK−1V

k1,··· ,kK−1

kK
. (20)

Consider instead

OPT ′ , max
k1,··· ,kK

µk1 + βµk1k2 + β2µk1,k2k3
+ · · ·+ βK−1µ

k1,··· ,kK−1

kK
. (21)

Clearly (19) implies that OPT
′

OPT ≥ 1 − βLmin

. Now using the same arguments as that used in the
proof of Theorem 4.1 for the optimization problem in definition (8), we can show that the greedy
algorithm attains OPT ′

1+β−βK in (21). Since K ≤ H , the result follows.

18



7.5 Proof of Theorem 4.3

Proof. For a user of type i, the total number of products with positive feedback is given by ri =∑H
j=1 q

i
jLj . Thus the expected total number of products with positive feedback is

R =

N∑
i=1

riPX(i)

On the event W that the number of display opportunities is greater than L, any policy obtains the
full payoff of R. Thus its expected payoff is bounded by

VG ≥ P (W )R = P (C ≥ L)R = βL−1R.

Further the optimal policy cannot attain a payoff greater than R. Thus the ratio of the payoff under
the any policy and that under the optimal policy is at least βL−1.

7.6 Recursive computation of Farsighted Greedy

Algorithm 4 (Farsighted greedy): Function [W (Q, p, β), A(Q, p, β)] where Q is a relevance ma-
trix and p is a probability distribution over user types.

• If Q is empty, return W (Q, p, β) = 0.
• If Q is non-empty, let the non-dominated equivalence classes be (U1, · · · , UK) and the

number of products in each class be denoted by Lk =
∑
j∈Uk

Lj . Let N be the number of
rows in Q corresponding to the user types.
• Let the event ω(k) be the event {X ∈ S(k)} where

S(k) = {i ∈ N : qij = 1∀ j ∈ Uk}.

Let Qk be the matrix obtained after removing all the columns corresponding to categories
in Uk and the rows corresponding to all the user types in S(k)c and let Qkres be the matrix
obtained after removing all the columns corresponding to categories in Uk and the rows
corresponding to all the user types in S(k). Finally, let pk denote the distribution on the
user types conditional on the event {X ∈ S(k)} and pkres be the distribution on the user
types conditional on {X ∈ S(k)c}.
• Then define

Wk = P (S(k))

(
1− βLk

1− β
+ βL

k

W (Qk, pk, β)

)
• Let W ∗ = maxkWk and let k∗ ∈ arg maxkWk

Return
W (Q, p, β) = W ∗ + β(1− P (S(k∗))W (Qk

∗

res, p
k∗

res, β).

A(Q, p, β) = k∗.

19


	Introduction
	Related work
	Structure of the paper

	Model
	Relevance maximization

	Characteristics of the optimal allocation policy
	Property 1: If category A is relevant, show it
	Property 2: If `likes A' implies `likes B', then show B before showing A
	Structure of the optimal policy

	Approximately optimal policies
	Policy 1: Farsighted Greedy
	Policy 2: Naive Greedy
	A lower bound for  close to 1

	Simulations
	Discussion and Conclusions
	Appendix
	Proof of lemma 3.1
	Proof of lemma  3.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Recursive computation of Farsighted Greedy


