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ABSTRACT
Online services routinely mine user data to predict user pref-
erences, make recommendations, and place targeted ads.
Recent research has demonstrated that several private user
attributes (such as political affiliation, sexual orientation,
and gender) can be inferred from such data. Can a privacy-
conscious user benefit from personalization while simultane-
ously protecting her private attributes? We study this ques-
tion in the context of a rating prediction service based on
matrix factorization. We construct a protocol of interactions
between the service and users that has remarkable optimal-
ity properties: it is privacy-preserving, in that no inference
algorithm can succeed in inferring a user’s private attribute
with a probability better than random guessing; it has max-
imal accuracy, in that no other privacy-preserving protocol
improves rating prediction; and, finally, it involves a mini-
mal disclosure, as the prediction accuracy strictly decreases
when the service reveals less information. We extensively
evaluate our protocol using several rating datasets, demon-
strating that it successfully blocks the inference of gender,
age and political affiliation, while incurring less than 5% de-
crease in the accuracy of rating prediction.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; K.4.1
[Computers and Society]: Privacy

Keywords
Matrix Factorization; Privacy-Preserving Protocols

1. INTRODUCTION
Online users are routinely asked to provide feedback about

their preferences and tastes. Often, users give five-star rat-
ings for movies, books, restaurants, or items they purchase,
and “like” news articles, blog posts, pictures or other kinds
micro-content. Online services mine such feedback to predict
users’ future preferences, using techniques such as matrix
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factorization [9, 23–25]. Such prediction can be employed
to, e.g., make relevant product recommendations, to display
targeted ads, or, more generally, personalize services offered;
making accurate predictions is thus of fundamental impor-
tance to many online services.

Although users may willingly reveal, e.g., ratings to movies
or “likes” to news articles and posts, there is an inherent pri-
vacy threat in this revelation. To see this, consider the fol-
lowing general setting. An entity, which we call for concrete-
ness the analyst, has a dataset of ratings given by users to a
set of items (e.g., movies). A private attribute of some users,
such as their gender, age, political affiliation, etc., is also in
the dataset. The analyst uses this dataset to offer a rec-
ommender service. Specifically, the analyst solicits ratings
from new users; using these ratings, it predicts how these
users would rate other items in its dataset (e.g., via matrix
factorization techniques), and recommends items they are
likely to rate highly. New users are privacy-conscious: they
want to receive relevant recommendations but do not want
the analyst to learn their private attribute. However, having
access to the above dataset, the analyst can potentially infer
the private attribute from the ratings they reveal.

The success of such inference clearly depends on how a
user’s feedback (i.e., her ratings) relates to her private at-
tribute, and whether this correlation is evident in the dataset.
Recent studies report many examples where strong correla-
tions have been found: attributes successfully inferred from
ratings or “likes” include political affiliation [26, 39], sexual
orientation [26], age [45], gender [39, 45], and even drug
use [26]. Yet more privacy threats have been extensively
documented in literature (see, e.g., [3, 31, 32, 35, 36]). It is
therefore natural to ask how can a privacy-conscious user
benefit from relevant recommendations, while preventing the
inference of her private information? Allowing this to hap-
pen is clearly desirable from the user’s point of view. It
also benefits the analyst, as it incentivizes privacy-conscious
individuals to use the recommender service.

A solution proposed by many recent research efforts is to
allow a user to distort her ratings before revealing them to
the analyst [7, 12, 22, 43]. This leads to a well-known trade-
off between accuracy and privacy : greater distortion yields
better privacy but also less accurate prediction (and, hence,
poorer recommendations). We introduce for the first time
a third dimension to this tradeoff, namely the information
the analyst discloses to the users.

To understand the importance of this dimension, consider
the following hypothetical scenario. The analyst gives the
privacy-conscious user an implementation of its rating pre-



diction algorithm, as well as any data it requires–including,
potentially, the full dataset at the analyst’s disposal. The
user can then execute this algorithm locally, identifying, e.g.,
which movies or news articles are most relevant to her. This
would provide perfect privacy (as the user reveals nothing to
the analyst) as well as maximal accuracy (since the user’s
ratings are not distorted). Clearly, this is untenable from
the analyst’s perspective, both for practical reasons (e.g.,
efficiency or code maintenance) and for commercial reasons:
the analyst may be charging a fee for its services, and ex-
posing such information publicly diminishes any competitive
edge it may have.

The above hypothetical scenario illustrates that both pri-
vacy and accuracy can be trivially attained when no con-
straints are placed on the information disclosed by the an-
alyst. On the other hand, such constraints are natural and
necessary when the analyst’s algorithms and data are propri-
etary. A natural goal is thus to determine the minimal infor-
mation the analyst needs to disclose to a privacy-conscious
user, to enable a recommender service that is both private
and accurate. We make the following contributions:

• We introduce a novel mathematical framework to study
issues of privacy, accuracy, and information disclosure
when the analyst predicts ratings through matrix fac-
torization (Section 4). In particular, we define a broad
class of learning protocols determining the interactions
between the analyst and a privacy-conscious user. Each
protocol specifies what information the analyst reveals,
how the user distorts her ratings, and how the analyst
uses this obfuscated feedback for rating prediction.
• We propose a simple learning protocol, which we call

the midpoint protocol (MP), and prove it has remarkable
optimality properties (Section 5). First, it provides per-
fect privacy w.r.t. the user’s private attribute: no infer-
ence algorithm predicts it better than random guessing.
Second, it yields optimal accuracy : there is no privacy-
preserving protocol allowing rating prediction at higher
accuracy than MP. Finally, the protocol involves a mini-
mal disclosure: any privacy-preserving protocol that dis-
closes less information than MP necessarily has a strictly
worse prediction accuracy.
• We extend our solution to handle common situations that

occur in practice (Section 6). We deal with the case
where the user can only rate a subset of the items for
which the analyst solicits feedback: we provide a variant
of MP, termed MPSS, and also establish its optimality in
this setting. We also discuss how the analyst can select
the set of items for which to solicit ratings, and how the
user can repeatedly interact with the analyst.
• We evaluate our proposed protocols on three datasets,

protecting attributes such as user gender, age and polit-
ical affiliation (Section 7). We show that MP and MPSS
attain excellent privacy: a wide array of inference meth-
ods are rendered no better than blind guessing, with an
area-under-the-curve (AUC) below 0.55. This privacy is
achieved with negligible impact (2-5%) on rating predic-
tion accuracy.

To the best of our knowledge, we are the first to take
into account the data disclosed by an analyst in the above
privacy-accuracy tradeoff, and to establish the optimality of
a combined disclosure, obfuscation, and prediction scheme.
Our proofs rely on the modeling assumption that is the cor-

nerstone of matrix factorization techniques and hence vali-
dated by vast empirical evidence (namely, that the user-item
ratings matrix is approximately low-rank). Moreover, the
fact that our algorithms successfully block inference against
a barrage of different classifiers, some non-linear, further es-
tablishes our assumption’s validity over real-world data.

2. RELATED WORK
Threats. Inference threats from user data have been exten-
sively documented by several recent studies. Demographic
information has been successfully inferred from blog posts [3],
search queries [5], reviews [35], tweets [36], and the profiles
of one’s Facebook friends [31]. In an extreme case of infer-
ence, Narayanan et al. [32] show that disclosure of movie
ratings can lead to full de-anonymization (through a linkage
attack), thus enabling unique identification of users. Closer
to our setting, Kosinski et al. [26] show that several person-
ality traits, including political views, sexual orientation, and
drug use can be accurately predicted from Facebook “likes”,
while Weinsberg et al. [45] show that gender can be inferred
from movie ratings with close to 80% accuracy. Salama-
tian et al. [39] also show that political views can be inferred
with confidence above 71% by using only a user’s ratings to
her 5 most-watched TV shows.

Privacy-Preserving Data Mining and Information-
Theoretic Models. Distorting data prior to its release to
an untrusted analyst has a long history in the context of
privacy-preserving data mining (see, e.g., [43, 44]). Distor-
tion vs. estimation accuracy tradeoffs have been studied in
the context of several statistical tasks, such as constructing
decision trees [1], clustering [2, 34], and parameter estima-
tion [12]. The outcome of such tasks amounts to learning an
aggregate property from the distorted data of a user pop-
ulation. In contrast, we focus on estimating accurately a
user profile to be used in matrix factorization, while keeping
private any attribute she deems sensitive.

Our setting is closely related to the following information-
theoretic problem [7, 46]. Consider two dependent random
variables X and Y , where X is to be released publicly while
Y is to be kept secret. To prevent inference of Y from the
release, one can apply a distortion f(X) on X; the goal
is then to find the minimal distortion so that the mutual
information between f(X) and Y is below a threshold. This
problem was originally addressed in the asymptotic regime
[40, 46], while a series of recent works study it in a non-
asymptotic setting [7,29,37,39]. Broadly speaking, our work
can be cast in this framework by treating a user’s ratings as
X, her private feature as Y , and employing a correlation
structure between them as specified by matrix factorization
(namely, (7)). Our definition of privacy then corresponds
to zero mutual information (i.e., “perfect” privacy), and our
protocol involves a minimal rating distortion.

We depart from these studies of privacy vs. accuracy (both
in information-theoretic as well as the privacy-preserving
data mining settings), by investigating a third axis, namely,
the information disclosed by the analyst. To the best of our
knowledge, our work is the first to characterize the disclo-
sure extent necessary to achieve an optimal privacy-accuracy
trade-off, an aspect absent from the aforementioned works.

Trusted Analyst. A different threat model than the one
we study here considers a trusted analyst that aggregates
data from multiple users in the clear. The analyst performs



a statistical operation over the data, distorts the output of
this operation, and releases it publicly. The privacy pro-
tection gained by the distortion is therefore towards a third
party that accesses the distorted output. The most common
approach to quantifying privacy guarantees in this setting is
through ε-differential privacy [13, 15]. The statistical op-
erations studied under this setting are numerous, including
social recommendations [28], covariance computation [30],
statistical estimation [14,41], classification [10,38], and prin-
cipal component analysis [11], to name a few. We differ in
considering an untrusted analyst, and enabling a privacy-
conscious user to interact with an analyst performing matrix
factorization, rather than learning aggregate statistics.

3. TECHNICAL BACKGROUND
In this section, we briefly review matrix factorization and

the modeling assumptions that underlie it. We also highlight
privacy challenges that arise from its application.

3.1 Matrix Factorization
Matrix factorization [8,23,25] addresses the following pre-

diction problem. A data analyst has access to a dataset in
which N users rate subsets of M possible items (e.g., movies,
restaurants, news articles, etc.). For [N ] ≡ {1, . . . , N} the
set of users, and [M ] ≡ {1, . . . ,M} the set of items, we de-
note by E ⊆ [N ] × [M ] the user-item pairs with a rating in
the dataset. For (i, j) ∈ E , let rij ∈ R be user i’s rating
to item j. Given the dataset {(i, j, ri,j)}(i,j)∈E , the analyst
wishes to predict the ratings for user-item pairs (i, j) /∈ E .

Matrix factorization attempts to solve this problem as-
suming that the N × M matrix comprising all ratings is
approximately low-rank. In particular, it is assumed that for
some small dimension d ∈ N there exist vectors xi,vj ∈ Rd,
termed the user and item profiles, respectively, such that

rij = 〈xi,vi〉+ εij , for i ∈ [N ], j ∈ [M ], (1)

where the “noise” variables εij are zero mean, i.i.d. random

variables with finite variance, and 〈a,b〉 ≡
∑d
k=1 akbk is the

usual scalar product in Rd. Given the ratings {rij , (i, j) ∈
E}, the user and item profiles are typically computed through
the following least-squares estimation (LSE) [25]:

min
{xi}i∈[N],{vj}j∈[M]

∑
(i,j)∈E(rij − 〈xi,vj〉)

2. (2)

Minimizing this square error is a natural objective. More-
over, when the noise variables in (1) are Gaussian, (2) is
equivalent to maximum likelihood estimation of user and
item profiles. Note that, having solved (2), the analyst can
predict the rating of user i for item j as:

r̂ij ≡ 〈xi,vj〉, (i, j) /∈ E . (3)

where xi,vj are the estimated profiles obtained from (2).
Unfortunately, the minimization (2) is not a convex opti-

mization problem. Nevertheless, there exist algorithms that
provably recover the correct user and item profiles, under ap-
propriate assumptions [8, 9, 23]. Moreover, simple gradient
descent or alternating least-squares techniques are known to
work very well in practice [25].

3.2 Incorporating Biases
Beyond user ratings, the analyst often has additional“con-

textual” information about users in the dataset. For ex-
ample, if users are not privacy-conscious, they may reveal

features such as their gender, age or other demographic in-
formation along with their ratings. Such information is typ-
ically included in MF through biases (see, e.g., [24,25]).

Suppose, for concreteness, that each user i discloses a bi-
nary feature xi0 ∈ {−1,+1}, e.g., their gender or political
affiliation. This information can be incorporated in MF by
adapting the model (1) as follows:

rij = 〈xi,vj〉+ xi0vj0 + εij = 〈xi, vj〉+ εij (4)

for all i ∈ [N ], j ∈ [M ], where vj0 ∈ R is a type-dependent
bias, and xi = (xi0,x) ∈ Rd+1, i ∈ [N ], vj = (vj0,vj) ∈
Rd+1, j ∈ [M ], are extended user and item profiles, respec-
tively. Under this modeling assumption, the analyst can
estimate profiles and biases jointly by solving:

min
{xi}i∈[N],{(vj0,vj)}j∈[M]

∑
(i,j)∈E(rij − 〈xi, vj〉)

2. (5)

Note that this minimization can be seen as a special case of
(2), in which extended profiles have dimension d+1, and the
first coordinate of xi is fixed to either −1 or +1 (depending
on the user’s binary feature xi0). In other words, the feature
xi0 can be treated as yet another feature of a user’s profile,
though it is explicit (i.e., a priori known) rather than latent
(i.e., inferred through MF). Prediction can be performed
again through r̂ij = 〈xi, vj〉, for (i, j) /∈ E .

Intuitively, the biases vj0 gauge the impact of the binary
feature xi0 on each user’s ratings. Indeed, consider sampling
a random user from a population, and let x = (x0,x) be her
profile, where x comprises the features that are independent
of x0. Then, it is easy to check from (4) that her rating rj
for item j will be such that:

E{rj | x0 = 1} − E{rj | x0 = 0} = 2vj0,

where the expectation is over the noise in (4), as well as the
random sampling of the user. Put differently, given access
to ratings by users that are not privacy-conscious and have
disclosed, e.g., their gender x0, vj0 corresponds to half the
distance between the mean ratings for item j among genders.

Additional explicit binary features can be incorporated
similarly, by adding one bias per feature in (5) (see, e.g.,
[25]). Categorical features can also be added through bina-
rization; for simplicity, we focus on a single binary feature,
discussing multiple and categorical features in Section 6.4.

3.3 Prediction for Privacy-Conscious Users
Consider a scenario in which the analyst has performed

MF over a dataset of users that disclose a binary feature,
extracting thusly the extended profiles vj = (vj0,vj) ∈ Rd+1

for each item j ∈ [M ]. Suppose now a privacy-conscious user
joins the system and does not explicitly reveal her private
binary feature x0 to the analyst.

In such a “cold-start” situation, the analyst would typi-
cally solicit a batch of ratings {rj}j∈S for some set S ⊆M .
Assume that the new user’s ratings also follow the linear
model (4) with extended profile x = (x0,x) ∈ {−1,+1}×Rd.
Then, the analyst can (a) infer the user’s extended profile
x, and (b) predict her ratings for items in [M ] \ S using the
extended item profiles {vj}j∈S as follows. First, the analyst
can infer x using through the LSE:

min
x0∈{−1,+1},x∈Rd

∑
j∈S(rj − 〈x,vj〉 − x0vj0)2. (6)

The minimization (6) can be computed in time linear in |S|,
by solving two linear regressions (one for each x0 ∈ {−1,+1})
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Figure 1: The red circles represent the three extreme protocols
(Sec. 4.1) that fail to meet all three properties simultaneously.
Our solution (see Sec. 5) lies near the upper front right edge of
the cube, as it has perfect privacy and accuracy. We will prove
(Thm. 1 in Sec. 5) that the region between our solution and the
optimal corner (‘zero’ disclosure, perfect privacy, maximal accu-
racy) is unattainable.

and picking the solution (x0,x) that yields the smallest er-
ror (6). Having obtained an estimate of the extended profile
x, the analyst can predict ratings as r̂j = 〈x, vj〉, for j /∈ S.

Beyond this LSE approach, the analyst can use a differ-
ent classification algorithm to first infer the private feature
x0, such as logistic regression or support vector machines
(SVMs). We refer the reader to, e.g., [45], for the descrip-
tion of several such algorithms and their application over
real rating data. Having an estimate of x0, the analyst can
proceed to solve (6) w.r.t. x alone, which involves a single
linear regression.

In both of the above approaches (joint LSE, or separate
inference of x0) the analyst infers the private feature x0. In-
deed, the LSE method (6) is known to predict information
such as gender or age with an accuracy between 65–83%
over real datasets [4]; separate inference of the private infor-
mation (through, e.g., logistic regression or SVMs) leads to
84-86% accuracy [45]. As such, by revealing her ratings, the
user also reveals x0, albeit indirectly and unintentionally.

4. MODELING PRIVACY TRADEOFFS
Section 3.3 illustrates that serving a privacy-conscious user

is not straightforward: there is a tension between the user’s
privacy and the utility she receives. Accurate profiling al-
lows correct rating prediction and enables relevant recom-
mendations, at the cost of the inadvertent revelation of the
user’s private feature. It is thus natural to ask whether the
user can benefit from accurate prediction while preventing
the inference of this feature. We will provide both rigorous
and empirical evidence that – perhaps surprisingly – this is
possible. Specific features can be obfuscated without harm
for personalization. One of our main contributions is to
identify that, beyond this privacy-utility tradeoff, there is in
fact a third aspect to this problem: namely, how much in-
formation the analyst discloses to the user. In what follows,
we present a framework that addresses these issues.

4.1 Problem Formulation
Motivated by Section 3.3, we consider a setting compris-

ing the two entities we have encountered so far, an analyst
and a privacy-conscious user. The analyst has access to a
dataset of ratings collected from users that are not privacy-
conscious, and have additionally revealed to the analyst a bi-
nary feature. By performing matrix factorization over this

dataset, the analyst has extracted extended item profiles
vj = (vj0,vj) ∈ Rd+1, j ∈ [M ], for a set of M items.

The analyst solicits the ratings of the privacy-conscious
user for a subset of items S ∈ [M ]. We again assume that
the user is parametrized by an extended profile x = (x0,x) ∈
{−1,+1} × Rd, and that her ratings follow (4). The ana-
lyst’s goal is to profile the user and identify items that the
user might rate highly in [M ] \ S. The user is willing to
aid the analyst in correctly profiling her; however, she is
privacy-conscious w.r.t. her private feature x0, and wishes
to prevent its inference. We thus wish to design a proto-
col for exchanging information between the analyst and the
user that has three salient properties; we state these here
informally, postponing precise definitions until Section 4.3:

(a) At the conclusion of the protocol, the analyst estimates x,
the non-private component of x, as accurately as possible.

(b) The analyst learns nothing about the private feature x0.
(c) The user learns as little as possible about the extended

profile vj of each item j.

To highlight the interplay between these three properties,
we discuss here three “non-solutions”, i.e., three protocols
that fail to satisfy all three properties. First, observe that
the “empty” protocol (no information exchange) clearly sat-
isfies (b) and (c), but not (a): the analyst does not learn x.
Second, the protocol in which the user discloses her ratings
to the analyst “in the clear”, as in Section 3.3, satisfies (a)
and (c) but not (b): it allows the analyst to estimate both x
and x0 through, e.g., the LSE (6).

Finally, consider the following protocol. The analyst dis-
closes all item profiles vj , j ∈ S, to the user. Subsequently,
the user estimates x locally, by solving the linear regression
(6) over her ratings in S, with her private feature x0 fixed.
The user concludes the protocol by sending the obtained
estimate of x to the analyst. Observe that this protocol sat-
isfies (a) and (b), but not (c). In particular, the user learns
the extended profiles of all items in their entirety.

These protocols illustrate that it is simple to satisfy any
two of the above properties, but not all three. Each of the
three “non-solutions” above are in fact extrema among pro-
tocols constrained by (a)-(c): each satisfies two properties in
the best way possible, while completely failing on the third.
In the conceptual schematic of Figure 1 we illustrate where
these three extreme protocols lie.

There is a clear motivation, from a practical perspective,
to seek protocols satisfying all three properties. Property (a)
ensures that, at the conclusion of the protocol, the analyst
learns the non-private component of the user’s profile, and
can use it to suggest new items–benefiting thusly the user,
and motivating the existence of this service. Property (b)
ensures that a privacy-conscious user receives this benefit
without revealing her private feature, thereby incentivizing
her participation. Finally, property (c) limits the extent
at which the item profiles {vj}j∈S are made publicly avail-
able. Indeed, the item profiles and the dataset from which
they were constructed are proprietary information: disclos-
ing them to any privacy-conscious user, as described by the
last non-solution, would allow any user to offer the same ser-
vice. More generally, it is to the analyst’s interest to enable
properties (a) and (b), thereby attracting privacy-conscious
users, while limiting the disclosure of any proprietary infor-
mation and its exposure to competition.
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Figure 2: A learning protocol R = (L, Y, x̂) between an ana-
lyst and a privacy-conscious user. The analyst has access to a
dataset, from which it extracts the extended profiles V through
MF. It discloses to the user the information ` = L(V). Using this
information, her vector of ratings r, and her private feature x0,
the user computes the obfuscated output y = Y (r, x0, `) and re-
veals it to the analyst. The latter uses this obfuscated feedback as
well as the profiles V to estimate x, using the estimator x̂(y,V).

It is natural to ask what is the precise statement of “as
accurately as possible”, “learns nothing”, and “as little as
possible” in the above description of (a)-(c). We provide
such formal definitions below.

4.2 A Learning Protocol
To formalize the notions introduced in properties (a)-(c)

of Section 4.1, we describe in this section the interactions
between the privacy-conscious user and the analyst in a more
precise fashion. Recall that the user is parametrized by an
extended profile x = (x0,x) ∈ {−1,+1} × Rd, and that her
ratings follow (4); namely,

rj = 〈x,vj〉+ x0vj0 + εj = 〈x, vj〉+ εj , j ∈ [M ] (7)

where vj ∈ Rd+1, is the extended profile of item j, extracted
through MF, and εj are i.i.d. zero mean random variables
of variance σ2 <∞. We note that, unless explicitly stated,
we do not assume that the noise variables εj are Gaussian;
our results will hold with greater generality.

We assume that the set of items S ⊆ [M ], for which rat-
ings are solicited, is an arbitrary set chosen by the analyst1.
We restrict our attention to items with extended profiles vj
such that vj 6= 0. Indeed, given the analyst’s purpose of es-
timating x, the rating of an item for which v = 0 is clearly
uninformative in light of (7). We denote by

Rd+1
−0 ≡ {(v0,v) ∈ Rd+1 : v 6= 0}

the set of all such vectors, and by V ≡ {vj , j ∈ S} ⊆ Rd+1
−0

the extended profiles of items in S. Recall that the user
does not a priori know V. In addition, the user knows her
private variable x0 and either knows or can easily generate
her rating rj to each item j ∈ S. Nevertheless, the user
does not a-priori know the remaining profile x ∈ Rd. This is
consistent with MF, as the “features” corresponding to each
coordinate of vi are “latent”.

The assumption that the user either knows or can easily
generate her ratings in S is natural when the user can im-
mediately form an opinion (this is the case for items such as
blog posts, ads, news articles, tweets, pictures, short videos,

1We discuss how the analyst can select the items in S in
Section 6.2.

etc.); or, when the “rating” is automatically generated from
user engagement (e.g., it is the time a user spends at a web-
site, or the reading collected by a skin sensor); or, when the
user is obligated to generate a response (because, e.g., she
is paid to do so). We discuss the case where the user can
readily produce ratings for only a subset of S in Section 6.1.

Using the above notation, we define a privacy-preserving
learning protocol as a protocol consisting of the following
three components, as illustrated in Figure 2:

Disclosure. The disclosure determines the amount of in-
formation that the analyst discloses to the user regarding
the profiles in V. Formally, it is a mapping

L : Rd+1
−0 → L,

with L a generic set2. This is implemented as a program
and executed by the analyst, who discloses to the user the
information `j ≡ L(vj) ∈ L for each item j ∈ S. We denote

by L(V) the vector ` ∈ L|S| with coordinates `j , i ∈ S. We
note that, in practice, L(V) can be made public, as it is
needed by all potential privacy-conscious users that wish to
interact with the analyst.

Obfuscation Scheme. The obfuscation scheme describes
how user ratings are modified (obfuscated) before being re-
vealed to the analyst. Formally, this is a mapping

Y : R|S| × {−1,+1} × L|S| → Y,

for Y again a generic set. The mapping is implemented as
a program and executed by the user. In particular, the user
enters her ratings r = (r1, . . . , r|S|) ∈ R|S|, her private vari-

able x0 as well as the disclosure ` = L(V) ∈ L|S|. The pro-
gram combines these quantities computing the obfuscated
value y = Y (r, x0, `) ∈ Y, which the user subsequently re-
veals to the analyst.

Estimator. Finally, using the obfuscated output by the
user, and the item profiles, the analyst constructs an es-
timator of the user’s profile x ∈ Rd. Formally:

x̂ : Y × (R(d+1)
−0 )|S| → Rd.

That is, given the item feature vectors V ⊂ Rd+1
−0 and the

corresponding obfuscated user feedback y ∈ Y, it yields an
estimate x̂(y,V) of the user’s non-private feature vector x.
The estimator is a program executed by the analyst.

We refer to a triplet R = (L, Y, x̂) as a learning protocol.
Note that the functional forms of all three of these compo-
nents are known to both parties: e.g., the analyst knows the
obfuscation scheme Y . Both parties are honest but curious:
they follow the protocol, but if at any step they can extract
more information than what is intentionally revealed, they
do so. All three mappings in protocol R can be randomized.
In the following, we denote by Px,V , Ex,V the probability
and expectation with respect to the noise in (7) as well as
protocol randomization, given x, V.

4.3 Privacy, Accuracy, and Disclosure Extent
Having formally specified a learning protocolR = (L, Y, x̂),

we now define the three quality metrics we wish to attain,
corresponding to the properties (a)-(c) of Section 4.1.

Privacy. We begin with our formalization of privacy:

2For technical reasons L, and Y below, are in fact measur-
able spaces, which include of course Rk, for some k ∈ N.



Definition 1. We say that R = (L, Y, x̂) is privacy pre-
serving if the obfuscated output Y is independent of x0. For-

mally, for all x ∈ Rd, V ⊆ R(d+1)
−0 , and A ⊆ Y,

P(−1,x),V
(
Y (r,−1,`)∈A

)
=P(+1,x),V

(
Y (r,+1,`)∈A

)
, (8)

where ` = L(V) is the information disclosed from V, and

r ∈ R|S| is the vector of user ratings.

Intuitively, a learning protocol is privacy-preserving if its
obfuscation scheme reveals nothing about the user’s private
variable: the distribution of the output Y does not depend
statistically on x0. Put differently, two users that have the
same x, but different x0, output obfuscated values that are
computationally indistinguishable [17].

Computational indistinguishability is a strong privacy prop-
erty, as it implies a user’s private variable is protected against
any inference algorithm (and not just, e.g., the LSE (6)):
in particular, no inference algorithm can estimate x0 with
probability better than 50% with access to y alone.

Accuracy. Our second definition determines a partial or-
dering among learning protocols w.r.t. their accuracy, as
captured by the `2 loss of the estimation:

Definition 2. We say that a learning protocol R = (L, Y, x̂)
is more accurate than R′ = (L′, Y ′, x̂′) if, for all V ⊆ Rd+1

−0 ,

sup
x0∈{0,1}

x∈Rd

E(x0,x),V{‖x̂(y,V)−x‖22} ≤ sup
x0∈{0,1}

x∈Rd

E(x0,x),V{‖x̂
′(y′,V)−x‖22} ,

where y = Y (r, x0, L(V)), y′ = Y ′(r, x0, L
′(V)). Further, we

say that it is strictly more accurate if the above inequality
holds strictly for some V ⊆ Rd+1

−0 .

Note that the accuracy of R is determined by the `2 loss of
the estimate x̂ computed in a worst-case scenario, among
all possible extended user profiles x = (x0,x).

This metric is natural. As we discuss in Section 6.2, it
relates to the so-called A-optimality criterion [6]. It also has
an additional compelling motivation. Recall that x̂ is used
to estimate the rating for a new item through the inner
product (3). An estimator x̂ minimizing the expected `2
loss also minimizes the mean square prediction error over
a new item. This further motivates this accuracy metric,
given that the analyst’s goal is correct rating prediction.

To see this, assume that the extended user profile is esti-
mated as x̂ = (x̂0, x̂) for some x0 (for brevity we omit the
dependence on y,V). Recall that the analyst uses this pro-
file to predict ratings for v /∈ V using r̂ = 〈v, x̂〉. The quality
of such a prediction is often evaluated in terms of the mean
square error (MSE):

MSE = E{(r−r̂)2} (7)= σ2+E{〈v, (x−x̂)〉2} .

Assuming a random item vector v with diagonal covariance
E(v20) = c0, E(v0v) = 0, E(vvT) = cI, we get

MSE = σ2 + c0E{(x0 − x̂0)2}+ cE
{
‖x− x̂‖22

}
.

Observe that the first term is independent of the estimation.
Under a privacy-preserving protocol, the value for x̂0 that
minimizes the second term is 0.5, also independent of the
estimation. The last term is precisely the `2 loss. Hence,
minimizing the mean square error of the analyst’s prediction
is equivalent to minimizing the `2 loss of the estimator x̂.
This directly motivates our accuracy definition.

Algorithm 1 Midpoint Protocol

Analyst’s Parameters

S ⊆ [M ], V = {(vj0,vj), j ∈ S} ⊆ Rd+1
−0

User’s Parameters
x0 ∈ {−1,+1}, r = (r1, . . . , r|S|) ∈ R|S|

DISCLOSURE: ` = L(V)
`j = vj0, for all j ∈ S

OBFUSCATION SCHEME: y = Y (r, x0, `)
yj = rj − x0 · `j , for all j ∈ S

ESTIMATOR: x̂ = x̂(y,V)
Apply the minimax estimator x̂∗ given by (9).

Disclosure Extent. Finally, we define a partial ordering
among learning protocols w.r.t. the amount of information
revealed by their disclosures.

Definition 3. We say that R = (L,R, x̂) discloses at
least as much information as R′ = (L′, Y ′, x̂′) if there exists
a measurable mapping ϕ : L → L′ such that

L′ = ϕ ◦ L

i.e., L′(v) = ϕ(L(v)) for each v ∈ Rd+1
−0 . We say that R and

R′ disclose the same amount of information if L = ϕ ◦ L′
and L′ = ϕ′ ◦ L for some ϕ, ϕ′. Finally, we say that R
discloses strictly more information than R′ if L′ = ϕ ◦L for
some ϕ but there exists no ϕ′ such that L = ϕ′ ◦ L′.

The above definition is again natural. Intuitively, a disclo-
sure L carries at least as much information as L′ if L′ can
be retrieved from L: the existence of the mapping ϕ implies
that the user can recover L′ from L by applying ϕ to the
disclosure L(V). Put differently, having a “black box” that
computes L, the user can compute L′ by feeding the output
of this box to ϕ. If this is the case, then L is clearly at least
as informative as L′.

5. AN OPTIMAL PROTOCOL
In this section we prove that a simple learning protocol

outlined in Algorithm 1, which we refer to as the midpoint
protocol (MP), has remarkable optimality properties. The
three components (L, Y, x̂) of MP are as follows:

1. The analyst discloses the entry v0 corresponding to the
private user feature x0, i.e., L

(
(v0,v)

)
≡ v0 for all (v0,v) ∈

Rd+1
−0 , and L ≡ R.

2. The user shifts each rating rj by the contribution of her
private feature. More specifically, the user reveals to the
analyst the quantities:

yj = rj − x0 · `j = rj − x0 · vj0, j ∈ S.

The user’s obfuscated feedback is thus Y (r, x0, `) ≡ y,
where vector y’s coordinates are the above quantities,
i.e., y = (y1, . . . , y|S|), and Y ≡ R|S|. Note that, by (7),
for every j ∈ S the obfuscated feedback satisfies yj =
〈vj ,x〉+ εj , with εj the i.i.d. zero-mean noise variables.

3. Finally, the analyst applies a minimax estimator on the
obfuscated feedback. Let X be the set of all measur-
able mappings x̂ estimating x given y and V (i.e., of the

form x̂ : R|S| × (R(d+1)
−0 )|S| → Rd). Estimator x̂∗ ∈ X is



minimax if it minimizes the worst-case `2 loss, i.e.:

sup
x0∈{0,1},x∈Rd

E(x0,x),V{‖x̂
∗(y,V)−x‖22} =

inf
x̂∈X

sup
x0∈{0,1},x∈X

E(x0,x),V{‖x̂(y,V)−x‖22}.
(9)

The following theorem summarizes the midpoint proto-
col’s remarkable properties:

Theorem 1. Under the linear model (7):

1. MP is privacy preserving.
2. No privacy preserving protocol is strictly more accurate
than MP.
3. Any privacy preserving protocol that does not disclose at
least as much information as MP is strictly less accurate.

We prove the theorem below. Its second and third statement
establish formally the optimality of the midpoint protocol.
Intuitively, the second statement implies that the midpoint
protocol has maximal accuracy. No privacy preserving pro-
tocol achieves better accuracy: surprisingly, this is true even
among schemes that disclose strictly more information than
the midpoint protocol. As such, the second statement of the
theorem imples there is no reason to disclose more than vj0
for each item j ∈ S.

The third statement implies that the midpoint protocol
engages in a minimal disclosure: to achieve maximal accu-
racy, a learning protocol must disclose at least vj0, j ∈ S.
In fact, our proof shows that the gap between the accuracy
of MP and a protocol not disclosing biases is infinite, for
certain V. We note that the disclosure in MP is intuitively
appealing: an analyst need only disclose the gap between av-
erage ratings across the two types (e.g., males and females,
conservatives and liberals, etc.) to enable protection of x0.

In general, the minimax estimator x̂∗ depends on the dis-
tribution followed by the noise variables in (7). For arbitrary
distributions, a minimax estimator that can be computed in
a closed form (rather than as the limit of a sequence of esti-
mators) may not be known. General conditions for the exis-
tence of such estimators can be found, e.g., in Strasser [42].
In the case of Gaussian noise, the minimax estimator coin-
cides with the least squares estimator (see, e.g., Lehman and
Casella [27, Thm. 1.15, Chap. 5]), i.e.,

x̂∗(y,V)=arg minx∈Rd

{∑|S|
j=1

(
yj−〈vj,x〉

)2}
. (10)

The minimization in (10) is a linear regression, and x̂∗ has
the following closed form:

x̂∗(y,V) =
(∑

j∈S vjv
T
j

)−1 ·
(∑

j∈S yjvj
)
. (11)

The accuracy of this estimator can also be computed in a
closed form. Using, (7), (11), and the definition of y, it can
easily be shown that, for all x ∈ Rd,

E(x0,x),V{‖x̂
∗(y,V)−x‖22}=σ2tr

[(∑
j∈S vjv

T
j

)−1]
, (12)

where σ2 the noise variance in (7) and tr(·) the trace.

5.1 Proof of Theorem 1
Privacy. To see that Thm. 1.1 holds, observe that the user

releases yj = rj − v0jx0
(7)
= 〈vj ,x〉 + εj , for each j ∈ S.

The distribution of yj thus does not depend on x0, so the
midpoint protocol is clearly privacy preserving.

Maximal Accuracy. We prove Theorem 1.2 by contradic-
tion; in particular, we show that a protocol that is strictly
more accurate can be used to construct an estimator that
has lower worst-case `2 loss than the minimax estimator.

Suppose that there exists a privacy preserving protocol
R′ = (L′, Y ′, x̂′) that is strictly more accurate than the mid-
point protocol R = (L, Y, x̂). Let ` = L(V), `′ = L′(V) be
the disclosures under the two protocols, and y = Y (r, x0, `),
y′ = Y ′(r, x0, `

′) the obfuscated values. Recall that

`j = vj0, and yj = rj − x0v0j = 〈vj ,x〉+ εj , j ∈ S.

We will use L′, Y ′ and x̂′ to construct an estimator x̂′′ that
has a lower `2 loss than the least squares estimator x̂ over y
and V. First, apply Y ′ to y + `, assuming that the private
variable is x0 = +1, using the disclosed information `′. That
is: y′′ = Y ′(y + `,+1, `′). Second, apply the estimator x̂′ to
this newly obfuscated output y′′, i.e.: x̂′(y′′,V) Combining
these two the estimator x̂′′ is given by

x̂′′(y,V) = x̂′
(
Y ′
(
y + `,+1, L′(V)

)
,V
)

Under this construction, the random variables y′′, y′ are
identically distributed. This is obvious if x0 = +1; indeed,
in this case y′′ = y′. On the other hand, since R′ is privacy
preserving, by (8):

Y ′(y + `,+1, `′)
d
= Y ′(y − `,−1, `′), (13)

i.e., the two variables are equal in distribution.
This implies that x̂′′(y,V) is identically distributed as

x̂′(y′,V). On the other hand, R′ is strictly more accurate
than R; hence, there exists a V such that

sup
x

E{‖x̂(y,V)− x‖22} > sup
x

E{‖x̂′(y′,V)− x‖22}

= sup
x

E{‖x̂′′(y,V)− x‖22},

a contradiction.

Minimal Disclosure. Consider a privacy preserving learn-
ing protocol R′ = (L′, Y ′, x̂′) that does not disclose at least
as much information as the midpoint protocol R = (L, Y, x̂).
Consider a setup where |S| = d, the dimension of the feature
profiles. Assume also that V is such that the matrix V =
[vj ]j∈S ∈ Rd×d is invertible, and denote by ` = L(V) ∈ Rd
the vector with coordinates vj0, j ∈ S.

For any x0 ∈ {+1,−1}, s ∈ Rd, and `′ ∈ (L′)d, let
Zx0(s, `′) ∈ Y ′ be a random variable with distribution given

by Zx0(s, `′)
d
= Y ′(s + ε, x0, `

′), where ε ∈ Rd a vector
of i.i.d. coordinates sampled from the same distribution as
the noise variables εj , j ∈ S. Put differently, Zx0(s, `′) is
distributed as the output of obfuscation Y ′ when r − ε =
V x + x0` = s ∈ Rd, L′(V) = `′, and the gender is x0. The
following then holds.

Lemma 1. If V ∈ Rd×d is invertible then, for all s ∈ Rd,

` = L(V), and `′ = L′(V), Z+(s, `′)
d
= Z−(s− 2`, `′).

Proof. By Eq. (13), for all x ∈ Rd,

Y ′(V x + `+ ε,+1, `′)
d
= Y ′(V x− `+ ε,−1, `′) .

The claim follows by taking x = V −1(s− `).

As R′ does not disclose as much information as the mid-
point protocol, by definition, there is no map ϕ such that
L(v) = ϕ(L′(v)) for all v = (v0,v) ∈ Rd+1

−0 . Hence, there



exist extended profiles v, v′ ∈ Rd+1
−0 such that v0 6= v′0 and

yet L′(v) = L′(v′). As both v = (v0,v), v′ = (v′0,v
′) belong

to Rd+1
−0 , the supports of v,v′ are non-empty. We consider

the following two cases:
Case 1. The supports of v,v′ intersect, i.e., there ex-

ists a k ∈ [d] such that vk 6= 0 and v′k 6= 0. In this case,
consider a scenario in which V = {v} ∪

⋃
1≤l≤d,l6=k,{el},

where el ∈ Rd+1
−0 a vector whose l-th coordinate is 1 and

all other coordinates are zero. Clearly, |S| = |V| = d, and
V = [vi]i∈[d] is invertible. Let `∗ = L′(V). By Lemma 1, for
all s ∈ R,

Z+(s+ 2v0e1, `
∗)

d
= Z−(s, `∗) , (14)

where e1 ∈ Rd is 1 at coordinate 1 and 0 everywhere else.
Similarly, in a scenario in which V ′ = {v′}∪

⋃
1≤l≤d,l6=k,{el},

V is again invertible. Crucially L′(V ′) = L(V) = `∗, so again
by Lemma 1:

Z+(s+ 2v′0e1, `
∗)

d
= Z−(s, `∗) , (15)

for all s ∈ Rd. Equations (14),(15) imply that, for all s ∈ Rd:

Z+(s+ ξe1, `
∗)

d
= Z+(s, `∗) (16)

where ξ ≡ 2(v0 − v′0). In other words, the obfuscation is
periodic with respect to the direction e1.

Observe that for any x ∈ {−1,+1}×Rd and any M ∈ R+,
we can construct a x′ ∈ {−1,+1} × Rd and a K ∈ N such
that (a) x,x′ differ only at coordinate k ∈ {1, 2, . . . , d}, (b)
〈v, x − x′〉 = Kξ, and (c) ‖x − x′‖2 ≥ M . To see this, let

K be a large enough integer such that K|ξ|
|vk|

> M . Taking,

x′k = xk +Kξ/vk, and x′l = xl for all other l in {0, 1, . . . , d}
yields a x′ that satisfies the desired properties (a) and (b).

Suppose that the learning protocol R is applied to V =
{v} ∪

⋃
1≤l≤d, 6=k{el} for a user with x0 = +1. Fix a

large M > 0. For each x and x′ constructed as above,
by (16), the obfuscated values generated by Y ′ have an
identical distribution. Hence, irrespectively of how the es-
timator x̂′ is implemented, either Ex,V{‖x̂′(y′,V)− x‖22} or
Ex′,V{‖x̂′(y′,V)−x′‖22} must be Ω(M2) which, in turn, im-
plies that supx∈{±1}×Rd Ex,V{‖x̂′(y′,V)− x‖22 =∞.

Note that, since vj , j ∈ S, are linearly independent, the
matrix

∑
j∈S vjv

T
j is positive definite and thus invertible.

Hence, in contrast to the above setting, the loss (12) of MP
in the case of Gaussian noise is finite.
Case 2. The supports of v,v′ are disjoint. In this case
v, v′ are linearly independent and, in particular, there exist
1 ≤ k, k′ ≤ d, k 6= k′, such that vk 6= 0, vk′ = 0 while v′k = 0,
v′k′ 6= 0. Let V = {v} ∪ {v′}

⋃
1≤l≤d,l 6=k,l6=k′{el}. Then,

|V| = d and the matrix V = [vj ]j∈S is again invertible. As
such, by swapping the positions of v and v′ in matrix V we
can show using a similar argument as in Case 1 that for all
s ∈ Rd:

Z+(s+ ξ(e1 − e2), `∗)
d
= Z+(s, `∗) (17)

where ξ ≡ 2(v0 − v′0) and `∗ = L(V). I.e., Z+ is periodic
in the direction e1 − e2. Moreover, for any x ∈ {−1,+1} ×
Rd and any M ∈ R+, we can similarly construct a x′ ∈
{−1,+1} × Rd and a K ∈ N such that (a) x,x′ differ only
at coordinates k, k′ ∈ {1, 2, . . . , d}, and (b) 〈v, x − x′〉 =
−〈v′, x−x′〉 = Kξ, and (c) ‖x−x′‖2 ≥M : the construction
adds Kξ/vk at the k-th coordinate and subtracts Kξ/v′k′

Algorithm 2 Midpoint Protocol with Sub-Sampling

Analyst’s Parameters

S ⊆ [M ], V = {(vj0,vj), j ∈ S} ⊆ Rd+1
−0

p = {(px01 , . . . , px0|S|), x0 ∈ {−,+}} ⊆ ([0, 1]× [0, 1])|S|

User’s Parameters
x0 ∈ {−1,+1}, S0 ⊆ S, r = {rj , j ∈ S0} ∈ R|S0|

DISCLOSURE: ` = L(V, p)
ρj = p−j /p

+
j , for all j ∈ S

`j = (vj0, ρj), for all j ∈ S

OBFUSCATION SCHEME: SR=SR(S0,x0,`)
y=Y (rSR ,x0,`)

SR = ∅, y = ∅
for all j ∈ S do

if j ∈ S0 then
bj ∼ Bern

(
min

(
1, (ρj)

x0
))

if bj = 1 then
SR = SR ∪ {j}
y = y ∪ {rj − x0vj0}

end if
end if

end for

ESTIMATOR: x̂ = x̂(y, (SR, y),V)

Solve x̂ = arg minx∈Rd

{∑
j∈SR

(
yj−〈vj ,x〉

)2}

from the k′-th coordinate, where K > M max(vk, v
′
k′)/ξ. A

similar argument as in Case 1 can be used to show again that
the estimator x̂′ cannot disambiguate between x, x′ over V,
yielding the theorem.

6. EXTENSIONS
We have up until now assumed that the analyst solicits

ratings for a set of items S ⊆ [M ], determined by the analyst
before the user reveals her feedback. In what follows, we
discuss how our analysis can be extended in the case where
the user only provides ratings for a subset of these items.
We also discuss how the analyst should select S, how a user
can repeatedly interact with the analyst, and, finally, how
to deal with multiple binary and categorical features.

6.1 Partial Feedback
There are cases of interest where a user may not be able

to generate a rating for all items in S. This is especially true
when the user needs to spend a non-negligible effort to de-
termine her preferences (examples include rating a feature-
length movie, a restaurant, or a book). In these cases, it
makes sense to assume that a user may readily provide rat-
ings for only a set S0 ⊆ S (e.g., the movies she has already
watched, or the restaurants she has already dined in, etc.).

Our analysis up until now applies when the user rates an
arbitrary set S selected by the analyst. As such, it does not
readily apply to this case: the set of items S0 a user rates
may depend on the private feature x0 (e.g., some movies
may be more likely to be viewed by men or liberals). In this
case, x0 would be be inferable not only from the ratings she
gives, but also from which items she has rated.

In this section, we describe how to modify the midpoint
protocol to deal with this issue. Intuitively, to ensure her pri-
vacy, rather than reporting obfuscated ratings for all items
she rated (i.e., set S0), the user can reveal ratings only for
a subset SR of S0. This sub-sampling of S0 can be done so



that SR has a distribution that is independent of x0, even
though S0 does not. Moreover, to ensure a high estimation
accuracy, the user ought to ensure SR is as large as possible,
subject to the constraint SR ⊆ S0.

Model. Before we present the modified protocol, we de-
scribe our assumption on how S0 is generated. For each
j ∈ [M ], denote by p+j , p−j the probabilities that a user
with private feature +1 or −1, respectively, has rated item
j ∈M. Observe that, just like the extended profiles vj , this
information can be extracted from a dataset comprising rat-
ings by non privacy-conscious users. Let p = [(p+j , p

−
j )]j∈S ∈

([0, 1]× [0, 1])|S| be the vector of pairs of probabilities.
We assume that the privacy-conscious user the has rated

items in the set S0 ⊆ S, whose distribution is given by the
product form3:

Px,V,p(S0 = A) =
∏
j∈S

px0j
∏

j∈S\A

(1− px0j ), for all A ⊆ S. (18)

Put differently, items j ∈ S are rated independently, each
with a probability px0j . Conditioned on S0, we assume that
the user’s ratings rj , j ∈ S0, follow the linear model (7) with
Gaussian noise. Note that the distribution of S0 depends on
x0: e.g., items j for which p+j > p−j are more likely to be
rated when x0 = +1.

Midpoint Protocol with Sub-Sampling. We now present
a modification of the midpoint protocol, which we refer to as
the midpoint protocol with sub-sampling (MPSS). MPSS is
summarized in Algorithm 2. First, along with the disclosure
of the biases vj0, j ∈ S, the analyst also discloses the ratios
ρj ≡ p−j /p

+
j , for j ∈ S. Having access to this information,

the user sub-samples items from S0. In particular, each item
j ∈ S0 is entered in the revealed set SR independently with
probability:

Px,V,p(i ∈ SR | j ∈ S0) = min (1, (ρj)
x0) , (19)

Having constructed SR, the user reveals ratings for j ∈ SR
after subtracting x0vj0, as in MP. Finally, the analyst esti-
mates x̂ through a least squares estimation over the obfus-
cated feedback, as in MP in the case of Gaussian noise.

To gain some intuition behind the selection of the set SR,
observe by (18) and (19) that, for any j ∈ S,

Px,V,p(j∈SR)=px0j min
(
1, (p−j /p

+
j )x0

)
=min(p+j , p

−
j ). (20)

This immediately implies that MPSS is privacy preserving:
both the distribution of SR and of the obfuscated ratings y
do not depend on x0. In fact, it is easy to see that since SR ⊆
S0 any privacy preserving protocol must satisfy Px,V,p(j ∈
SR) ≤ min(p+j , p

−
j ): indeed, if for example p+j < p−j , then

a user rating j with probability higher than p+j must have
x0 = −1 (see our technical report [20] for a formal proof of
this statement). As such, MPSS reveals ratings for a set SR
of maximal size, in expectation.

This intuition can be used to establish the optimality of
MPSS among a wide class of learning protocols, under (7)
(with Gaussian noise) and (18). We can again show that it
attains optimal accuracy. Moreover, it also involves a mini-
mal disclosure: a protocol that does not reveal the ratios ρj ,
j ∈ S, necessarily rates strictly fewer items than MPSS, in
expectation. We provide a formal proof of these statements,

3Here, we slightly abuse notation, e.g., denoting with px0j
the parameter p+j when x0 = +1.

as well as a definition of the class of protocols we consider,
in our technical report [20].

6.2 Item Set Selection
Theorem 1 implies that the analyst cannot improve the

prediction of the private variable x0 through its choice of S,
under the midpoint protocol. In fact, the same is true under
any privacy-preserving learning protocol: irrespectively of
the analyst’s choice for S, the obfuscated feedback y will be
statistically independent of x0.

The analyst can however strategically select S to effect the
accuracy of the estimate of the non-private profile x. Indeed,
the analyst should attempt to select a set S that maximizes
the accuracy of the estimator x̂. In settings where least
squares estimator is minimax (e.g., when noise is Gaussian),
there are well-known techniques for addressing this problem.
Eq. (12) implies that it is natural to select S by solving

Maximize: F (S) = −tr
[(∑

j∈S vjv
T
j

)−1]
subject to: |S| ≤ B,S ⊆ [M ],

(21)

where B is the number of items for which the analyst solicits
feedback. The optimization problem (21) is NP-hard, and
has been extensively studied in the context of experimental
design (see, e.g., Section 7.5 of [6]). The objective function
F is commonly referred to as the A-optimality criterion.
Convex relaxations of (21) exist when S is a multiset, i.e.,
when items with the same profile can be presented to the
user multiple times, each generating an i.i.d. response [6].
When such repetition is not possible, constant approxima-
tion algorithms can be constructed based on the fact that F
is increasing and submodular (see, e.g., [16]). In particular,
given any set S∗ ⊂ [M ] of items whose profiles are linearly
independent, there exists a polynomial time algorithm for
maximizing F (S ∪ S∗)− F (S∗) subject to |S| ≤ B within a
1− 1

e
approximation factor [33].

6.3 Repeated Interactions
Our analysis (and, in particular, the optimality of our pro-

tocols) persists even when the user repeatedly interacts with
the analyst. In particular, the user may return to the ser-
vice multiple times, each time asked to rate a different set
of items S(k) \ [M ], k ≥ 1. The selection of the set S(k)

could be adaptive, i.e., depend on the obfuscated feedback
the user has revealed up until the k− 1-th time. For each k,
the analyst again would apply MP (or MPSS), again disclos-

ing the same information for each S(k), the only difference
being that the estimator x̂ would be applied to all revealed
obfuscated ratings y(1), ..., y(k). This repeated interaction is
still perfectly private: the joint distribution of the obfus-
cated outputs y(k) does not depend on x0. Moreover, each
estimation remains maximally accurate at each interaction,
while each disclosure is again minimal.

6.4 Categorical Features
We discuss below how to express categorical features as

multiple binary features through binarization, and illustrate
how to incorporate both cases in our analysis. The standard
approach to incorporate a categorical feature of the form
x0 ∈ {1, 2, . . . ,K} in matrix factorization is by introducing a
category-specific bias (see, e.g., [25]). That is, the modeling
assumption (7) is replaced by

r = 〈x,vj〉+ bx0j + εj , j ∈ [M ] (22)



where bkj ∈ R, k ∈ [K] are category-dependent biases.
Consider a representation of x0 ∈ [K] as a binary vector

x0 ∈ {−1,+1}K whose x0-th coordinate is +1, and all other
coordinates are −1. I.e., the coordinate x0k at k ∈ [K] is
given +1 if k = x0 and −1 o.w. For k ∈ [K], let bjk ≡ bkj /2
and define µj ≡

∑
k∈[K] b

k
j /2. Then, observe that (22) is

equivalent to

r = 〈x,vj〉+
∑
k∈[K]

x0kbjk + µj + εj ,

= 〈x′,v′j〉+
∑
k∈[K]

x0kbjk + εj , j ∈ [M ], (23)

where x′ = (x, 1) ∈ Rd+1 and v′j = (vj , µj) ∈ Rd+1.
Hence, a categorical feature can be incorporated in our

analysis as follows. First, given a dataset of ratings by non-
privacy conscious users that reveal their categorical feature
x0 ∈ [K], the analyst first“binarizes” this feature, construct-
ing a vector x0 ∈ {−1, 1}K for each user. It then performs
matrix factorization on the ratings using (23), learning vec-
tors v′j ∈ Rd+1, and biases bj = (bjk)k∈[K] ∈ RK . A
privacy-conscious user subsequently interacts with the an-
alyst using the standard scheme as follows. The analyst
discloses the biases bj for each j ∈ S, and the user reveals
yj = rj −

∑
k∈[K] x0kbjk, j ∈ S, where x0k is her binarized

categorical feature. Finally, the analyst infers x′ through
linear regression over the pairs (yj ,v

′
j), j ∈ S.

7. EVALUATION
In this section we evaluate our protocols on real-world

datasets. Our experiments confirm that MP and MPSS are
indeed able to protect the privacy of users against inference
algorithms, including non-linear algorithms, with little im-
pact on prediction accuracy.

7.1 Experimental Setup
We study two types of datasets, sparse and dense. In

sparse datasets, the set of items a user rates is often cor-
related with the private feature. This does not happen in
dense datasets because all users rate all (or nearly all) items.

Datasets. We evaluate our methods on three datasets:
Politics-and-TV, Movielens and Flixster. Politics-and-TV
(PTV) [39] is a ratings dataset that includes 5-star ratings of
users to 50 TV-shows and, in addition, each user’s political
affiliation (Democrat or Republican) and gender. To make
it dense, we consider only users that rate over 40 items, re-
sulting in 365 users; 280 provide ratings to all 50 TV shows.
Movielens4 and Flixster5 [21] are movie recommender sys-
tems in which users rate movies from a catalog of thousands
of movies. Both Movielens and Flixster datasets include user
gender. Movielens also includes age groups; we categorize
users as young adults (ages 18–35), or adults (ages 35–65).
We preprocessed Movielens and Flixster to consider only
users with at least 20 ratings, and items that were rated by
at least 20 users. Table 3 summarizes the statistics of these
three datasets.

Methodology. Throughout the evaluation, we seek to quan-
tify the privacy risk to a user as well as the impact of obfus-
cation on the prediction accuracy. To this end, we perform

4http://www.grouplens.org/node/73
5http://www.sfu.ca/~sja25/datasets/

10-fold cross-validation as follows. We split the users in each
dataset into 10 folds. We use 9 folds as a training set (serv-
ing the purpose of a dataset of non privacy-conscious users
in Figure 2) and 1 fold as a test set (whose users we treat
as privacy-conscious).

We use the training set to (a) compute extended profiles
for each item by performing matrix factorization, (b) empir-
ically estimate the probabilities p+, p− for each item, and
(c) train multiple classifiers, to be used to infer the private
features. We describe the details of our MF implementation
and the classifiers we use below.

We split the ratings of each user in the test set into two
sets by randomly selecting 70% of the ratings as the first
set, and the remaining 30% as the second set. We obfuscate
the ratings in the first set using MP, MPSS, and several
baselines as described in detail below. The obfuscated rat-
ings are given as input to our classifiers to infer the user’s
private feature. We further estimate a user’s extended pro-
file using the LSE method described in Section 3.3, and use
this profile (including both x and the inferred x0) to predict
her ratings on the second set. For each obfuscation scheme
and classification method, we measure the privacy risk of
the inference through these classifiers using the area under
the curve (AUC) metric [18, 19]. Moreover, for each obfus-
cation scheme, we measure the prediction accuracy through
the root mean square error (RMSE) of the predicted rat-
ings. We cross-validate our results by computing the AUC
and RMSE 10 times, each time with a different fold as a test
set, and reporting average values. We note that the AUC
ranges from 0.5 (perfect privacy) to 1 (no privacy).

Matrix Factorization. We use 20 iterations of stochastic
gradient descent [25] to perform MF on each training set.
For each item, feature biases vj0 were computed as the half
distance between the average item ratings per each private
feature value. The remaining features vj were computed
through matrix factorization. We computed optimal regu-
larization parameters and the dimension d = 20 through an
additional 10-fold cross validation.

Privacy Risk Assessment. We apply several standard
classification methods to infer the private feature from the
training ratings, namely Multinomial Näıve Bayes [45], Lo-
gistic Regression (LR), non-linear Support Vector Machines
(SVM) with a Radial Basis Function (RBF) kernel, as well
as the LSE (6). The input to the LR, NB and SVM meth-
ods comprises the ratings of all items provided by the user
as well as zeros for movies not rated, while LSE operates
only on the ratings that the user provides. As SVM scales
quadraticaly with the number of users, we could not execute
it on our largest dataset (Flixster, c.f. Table 3).

Obfuscation Schemes. When using MP, the obfuscated
rating may not be an integer value, and may even be outside
of the range of rating values which is expected by a recom-
mender system. Therefore, we consider a variation of MP
that rounds the rating value to an integer in the range [1, 5].
Given a non-integer obfuscated rating r, which is between
two integers k = brc and k + 1, we perform rounding by
assigning the rating k with probability r− k and the rating
k+1 with probability 1−(r−k), which on expectation gives
the desired rating r. Ratings higher than 5 and those lower
than 1 are truncated to 5 and 1, respectively. We refer to
this process as rounding, and denote the obfuscation scheme

http://www.grouplens.org/node/73
http://www.sfu.ca/~sja25/datasets/


Dataset Private featureUsersItemsRatings
All 365 50 18K

PTV Gender (F:M) 2.7:1 - 2.7:1
Politics (R:D) 1:1.4 - 1:1.4
All 6K 3K 1M

MovielensGender (F:M) 1:2.5 - 1:3
Age (Y:A) 1:1.3 - 1:1.6
All 26K 9921 5.6M

Flixster Gender (F:M) 1.7:1 - 1.5:1

Figure 3: Statistics of the datasets used
for evaluation. The ratios represent the
class skew Females:Males (F:M) for gen-
der, Young:Adult(Y:A) for age and Repub-
lican:Democrats (R:D) for political affilia-
tion.
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Figure 4: Privacy risk and prediction accuracy on PTV, obtained using four classifiers and
obfuscation schemes (NO-No obfuscation, MP - Midpoint Protocol, r - Rounding, IA - Item
Average, FA - Feature Average, SS - Sub-Sampling). The proposed protocol (MP) is robust
to privacy attacks with hardly any loss in predictive power.
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Figure 5: Privacy risk and prediction accuracy on Movielens and Flixster (sparse datasets), obtained using four classifiers and obfuscation
schemes (NO-No obfuscation, MP - Midpoint Protocol, r - Rounding, IA - Item Average, FA - Feature Average, SS - Sub-Sampling).
The proposed protocol (MPSS) is robust to privacy attacks without harming predictive power.

as MPr for midpoint protocol with rounding and MPSSr for
midpoint protocol with sub-sampling and rounding.

We also consider two alternative methods for obfuscation.
First, the item average (IA) scheme replaces a user’s rat-
ing with the average rating of the item, computed from the
training set. Second, the feature average (FA) scheme re-
places the user’s rating with the average rating provided by
the feature classes (e.g., males and females), each with prob-
ability 0.5.

Finally, we evaluate each of the above obfuscation schemes,
i.e., MP, MPr, IA and FA, together with sub-sampling (SS).
As a baseline, we also evaluated the privacy risk and the pre-
diction accuracy when no obfuscation scheme is used (NO).

7.2 Experimental Results
Dense Dataset. We begin by evaluating the obfuscation
schemes on the dense PTV dataset using its two users’ fea-
tures (gender and political affiliation), illustrated in Fig-
ures 4a and 4b, respectively. Each figure shows the privacy
risk (AUC) computed using the 4 inference methods, and

the prediction accuracy (RMSE) on applying different ob-
fuscation schemes.

Both figures clearly show that MP successfully mitigates
the privacy risk (AUC is around 0.5) whereas the prediction
accuracy is hardly impacted (2% increase in RMSE). This
illustrates that MP attains excellent privacy in practice, and
that our modeling assumptions are reasonable: there is little
correlation to the private feature after the category bias is
removed. Indeed, strong correlations not captured by (7)
could manifest as failure to block inference after obfuscation,
especially through the non-linear SVM classifier. This is
clearly not the case, indicating that any dependence on the
private feature not captured by (7) is quite weak.

Adding rounding (MPr), which is essential for real-world
deployment of MP, has very little effect on both the AUC
and RMSE. Though IA and FA are successful in mitigating
the privacy risk, they are suboptimal in terms of prediction.
They severely impact the prediction accuracy, increasing the
RMSE by roughly 9%. Finally, since this is a dense dataset,
there is little correlation between the private feature and the
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Figure 6: Distribution of inference probabilities for males and fe-
males using Movielens dataset and logistic regression (left) before
obfuscation and (right) after MPSS obfuscation.

set of items a user rates. Therefore, MP without SS suffices
to mitigate the privacy risk.

Sparse Datasets. Next, we investigate the effect of par-
tial feedback by evaluating our obfuscation schemes on the
Movielens and Flixster datasets. In these datasets, in ad-
dition to the rating value, the set of items rated by a user
can be correlated with her private feature. The results for
obfuscation on Movielens and Flixster are in Figure 5.

For all three datasets, we observe that MP successfully
blocks inference by LSE, but fails against the other three
methods. This is expected, as the items rated are correlated
to the private feature, and LSE is the only method among
the four that is insensitive to this set. For the same rea-
son, SS alone defeats all methods except LSE, which still
detects the feature from the unobfuscated ratings (AUC
0.69–0.71). Finally, MPSS and MPSSr have excellent per-
formance across the board, both in terms of privacy risk
(AUC 0.5–0.55) and impact on prediction accuracy (up to
5%). In contrast, IA and FA significantly increase the RMSE
(around 15%). We stress that, in these datasets, items are
not rated independently as postulated by (18). Neverthe-
less, the results above indicate that MPSS blocks inference
in practice even when this assumption is relaxed.

We further quantify the impact of sub-sampling in terms
of the number of items that are not reported to the analyst
in a partial feedback setting. To this end, we compute the
ratio of items excluded in the feedback reported by the user
as a result of applying SS. We found that for the dense PTV
dataset, 80% of the users include all their ratings in their
partial feedback, and the remaining 20% exclude at most
5% of their ratings. For the sparse Flixster and Movielens
datasets, 50% of the users do not include 10% and 23% of
their ratings, respectively. All users include at least 50% of
their ratings, hence the prediction accuracy does not suffer
with MPSS obfuscation.

Overall, these results indicate that both MP and MPSS
are highly effective in real-world datasets – they mitigate
the privacy risk while incurring very small impact on the
prediction accuracy. Moreover, these obfuscation schemes
work well even when facing non-linear inference methods,
such as SVM, indicating that in practice, they eliminate any
dependency between the ratings and the private feature.

Privacy Risk. To further illustrate how obfuscation de-
feats the inference of a private feature, we focus of the ef-
fect of obfuscation on logistic regression over the Movielens
Gender dataset. Figures 6(a) and 6(b) plot the distribu-
tion of log (PMale/PFemale) (a) before obfuscation and (b)
after obfuscation with MPSS. Here, PMale and PFemale are
the posterior probabilities for the two classes as obtained

through logistic regression. Prior to obfuscation, there is
a clear separation between the distributions of males and
females, enabling successful gender inference (AUC 0.82 as
shown in Figure 5a). However, after obfuscation, the two
distributions become indistinguishable (AUC 0.54).

Privacy-Accuracy Tradeoff. Finally, we study the privacy-
prediction accuracy tradeoff by applying an obfuscation scheme
on an item rating with probability α, and releasing the real
rating with probability 1−α. We vary the value of α between
0 and 1 in steps of 0.1, that is, when α = 0 no obfuscation is
performed, and α = 1 means that all ratings are obfuscated.
For each α, we measure the RMSE as well as the AUC of
LSE.

Figure 7 shows the resulting RMSE-AUC tradeoff curves
for MPSS, MPSSr and the two baseline obfuscation schemes
with sub-sampling. The figure shows that MPSS and MPSSr
provide the best privacy-accuracy tradeoff (the slopes of the
curves are almost flat), and consistently obtain better pre-
diction accuracy (lower RMSE) for the same privacy risk
(inference AUC) than all other methods.

8. CONCLUSION
We have introduced a framework for reasoning about pri-

vacy, accuracy, and dislosure tradeoffs in matrix factoriza-
tion. This naturally raises the question of how these trade-
offs extend to other statistical or prediction tasks. An or-
thogonal direction to the one we pursued, when seeking a
mininal disclosure, is to investigate schemes that are not
perfectly private. It would be interesting to investigate, e.g.,
privacy-dislosure tradeoffs, rather than the usual privacy-
accuracy tradeoffs one encounters in literature. For exam-
ple, it is not clear whether one can construct protocols in
which the distribution of the obfuscated output differs ac-
cross users with opposite private attribute by, e.g., an ε fac-
tor, but leak less information than MP: such protocols could,
e.g., disclose a quantized version of the biases for each item.
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