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Abstract

We study a market for private data in which a data analyst publicly releases a statistic
over a database of private information. Individuals that own the data incur a cost for their
loss of privacy proportional to the differential privacy guarantee given by the analyst at the
time of the release. The analyst incentivizes individuals by compensating them, giving rise
to a privacy auction. Motivated by recommender systems, the statistic we consider is a linear
predictor function with publicly known weights. The statistic can be viewed as a prediction
of the unknown data of a new individual, based on the data of individuals in the database.
We formalize the trade-off between privacy and accuracy in this setting, and show that
a simple class of estimates achieves an order-optimal trade-off. It thus suffices to focus on
auction mechanisms that output such estimates. We use this observation to design a truthful,
individually rational, proportional-purchase mechanism under a fixed budget constraint. We
show that our mechanism is 5-approximate in terms of accuracy compared to the optimal
mechanism, and that no truthful mechanism can achieve a 2 − ε approximation, for any
ε > 0.
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1 Introduction

Recommender systems are ubiquitous on the Internet, lying at the heart of some of the most
popular Internet services, including Netflix, Yahoo, and Amazon. These systems use algorithms
to predict, e.g., a user’s rating for a movie, her propensity to click on an advertisement or
to purchase a product online. By design, such prediction algorithms rely on large training
datasets, typically comprising data from thousands (often millions) of individuals. This has
raised serious privacy concerns among researchers and consumer advocacy groups. Privacy
researchers have shown that access to seemingly non-sensitive data (e.g., movie ratings) can
leak potentially sensitive information when combined with de-anonymization techniques [NS08].
Moreover, a spate of recent lawsuits [Net, Mel12, Rib12] as well as behavioral studies [JKH+09]
have demonstrated the increasing reluctance of the public to allow the unfettered use of their
data.

However, a widespread restriction on data used by recommender systems would be detri-
mental to the quality of their recommendations. One way to address this tension between the
value of data and the users’ need for privacy is through incentivization. In short, a recommender
system using an individual’s data ought to appropriately compensate her for the violation of her
privacy, thereby incentivizing her consent to this use.

We study the issue of user incentivization through privacy auctions, as introduced by Ghosh
and Roth [GR11]. In a privacy auction, a data analyst has access to a database d ∈ Rn of
private data di, i = 1, . . . , n, each corresponding to a different individual. This data may
represent information that is to be protected, such as an individual’s propensity to click on an
ad or purchase a product, or the number of visits to a particular website. As in Ghosh and
Roth [GR11], we assume a verified database in which individuals cannot lie about their data.
The analyst wishes to publicly release an estimate ŝ(d) of a statistic s(d) evaluated over the
database. In addition, each individual incurs a privacy cost ci upon the release of the estimate
ŝ(d), and must be appropriately compensated by the analyst for this loss of utility. The analyst
has a budget, which limits the total compensation paid out. As such, given a budget and a
statistic s, the analyst must (a) solicit the costs of individuals ci and (b) determine the estimate
ŝ to release as well as the appropriate compensation to each individual.

Ghosh and Roth employ differential privacy [DMNS06] as a principled approach to quanti-
fying the privacy cost ci. Informally, ensuring that ŝ(d) is ε-differentially private with respect
to individual i provides a guarantee on the privacy of this individual; a small ε corresponds to
better privacy since it guarantees that ŝ(d) is essentially independent of the individual’s data
di. Privacy auctions incorporate this notion by assuming that each individual i incurs a cost
ci = ci(ε), that is a function of the privacy guarantee ε provided by the analyst.

1.1 Our Setting

Motivated by recommender systems, we focus in this paper on a scenario where the statistic s
takes the form of a linear predictor :

s(d) := 〈w,d〉 =
∑n

i=1widi, (1)

where w ∈ Rn, is a publicly known vector of real (possibly negative) weights. Intuitively,
the public weights wi serve as measures of the similarity between each individual i and a new
individual, outside the database. The function s(d) can then be interpreted as a prediction of
the value d for this new individual.
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For the sake of concreteness, assume that each individual i ∈ [n] = {1, . . . , n} is endowed with
a public vector yi ∈ Rm, which includes m publicly known features about this individual. These
could be, e.g., demographic information such as age, gender or zip code, that the individual
discloses in a public online profile. Note that, though features yi are public, the data di is
private. Let Y = [yi]i∈[n] ∈ Rn×m be a matrix comprising public feature vectors. Consider a
new individual, not belonging to the database, whose public feature profile is y ∈ Rm. Having
access to Y, d, and y, the data analyst wishes to release a prediction for the unknown value d
for this new individual. In many practical cases, this prediction takes the form s(d) = 〈w,d〉,
for some w = w(y,Y).

Example. In k-Nearest Neighbors (k-NN) prediction [HTF09], the predicted value
is given by an average among the k nearest neighbors of the feature vector y of the
new individual among the vectors Y. More specifically, let Nk(y) ⊂ [n] denote the
k individuals whose feature vectors yi are closest to y under a distance metric over
Rm (e.g., the `2 norm). Then, the prediction for the new individual is given by
s(d) = 1

k

∑
i∈Nk(y) di =

∑
iwidi, where wi = 1

k if i ∈ Nk(y) and wi = 0 otherwise.

Beyond k-NN, linear predictors of the form (1) include many well-studied methods of statis-
tical inference, such as the Nadaranya-Watson weighted average, ridge regression, and support
vector machines [HTF09]. We provide a brief review of such methods in Section 5. Func-
tions of the form (1) are thus of particular interest in the context of recommender systems
[SKKR01, LSY03], as well as other applications involving predictions (e.g., polling/surveys,
marketing). In the sequel, we ignore the provenance of the public weights w, keeping in mind
that any of these methods apply.

1.2 Our Contributions

Our contributions are as follows:

1. Privacy-Accuracy Trade-off. We characterize the accuracy of the estimate ŝ in terms of
the distortion between the linear predictor s and ŝ defined as δ(s, ŝ) := maxd E

[
|s(d)− ŝ(d)|2

]
,

i.e., the maximum mean square error between s(d) and ŝ(d) over all databases d. We
define a privacy index β(ŝ) that captures the amount of privacy an estimator ŝ provides
to individuals in the database. We show that any estimator ŝ with low distortion must
also have a low privacy index (Theorem 1).

2. Laplace Estimators Suffice. We show that a special class of Laplace estimators [DMNS06,
Dwo06] (i.e., estimators that use noise drawn from a Laplace distribution), which we call
Discrete Canonical Laplace Estimator Functions (DCLEFs), exhibits an order-optimal
trade-off between privacy and distortion (Theorem 2). This allows us to restrict our focus
on privacy auctions that output DCLEFs as estimators of the linear predictor s.

3. Truthful, 5-approximate Mechanism, and Lower bound. We design a truthful, in-
dividually rational, and budget feasible mechanism that outputs a DCLEF as an estimator
of the linear predictor (Theorem 3). Our estimator’s accuracy is a 5-approximation with
respect to the DCLEF output by an optimal, individually rational, budget feasible mecha-
nism. We also prove a lower bound (Theorem 4): there is no truthful DCLEF mechanism
that achieves an approximation ratio 2− ε, for any ε > 0.
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In our analysis, we exploit the fact that when ŝ is a Laplace estimator minimizing distortion
under a budget resembles the knapsack problem. As a result, the problem of designing a privacy
auction that outputs a DCLEF ŝ is similar in spirit to the knapsack auction mechanism [Sin10].
However, our setting poses an additional challenge because the privacy costs exhibit externalities:
the cost incurred by an individual is a function of which other individuals are being compensated.
Despite the externalities in costs, we achieve the same approximation as the one known for the
knapsack auction mechanism [Sin10].

1.3 Related Work

There is a rich literature on differential privacy beginning with the work of Dwork et al.
[DMNS06] who introduced it as a formal definition of database privacy. Informally, an al-
gorithm is ε-differentially private if changing the data of a single individual does not change the
probability of any outcome by more than an eε ≈ (1 + ε) multiplicative factor.

Privacy of behavioral data. Differentially-private algorithms have been developed for
the release of several different kinds of online user behavioral data such as click-through rates
and search-query frequencies [KKMN09], as well as movie ratings [MM09]. As pointed out by
McSherry and Mironov [MM09], the reason why the release of such data constitutes a privacy
violation is not necessarily that, e.g., individuals perceive it as embarrassing, but that it renders
them susceptible to linkage and de-anonymization attacks [NS08]. Such linkages could allow, for
example, an attacker to piece together an individual’s address stored in one database with his
credit card number or social security number stored in another database. It is therefore natural
to attribute a loss of utility to the disclosure of such data.

Privacy auctions. Quantifying the cost of privacy loss allows one to study privacy in the
context of an economic transaction. Ghosh and Roth initiate this study of privacy auctions in
the setting where the data is binary and the statistic reported is the sum of bits, i.e., di ∈ {0, 1}
and wi = 1 for all i = 1, . . . , n [GR11]. Unfortunately, the Ghosh-Roth auction mechanism can-
not be readily generalized to asymmetric statistics such as (1), which, as discussed in Section 5,
have numerous important applications including recommender systems. Our Theorems 1 and 2,
which parallel the characterization of order-optimal estimators in [GR11], imply that to produce
an accurate estimate of s, the estimator ŝ must provide different privacy guarantees to different
individuals. This is in contrast to the multi-unit procurement auction of [GR11]. In fact, as dis-
cussed the introduction, a privacy auction outputting a DCLEF ŝ(d) has many similarities with
a knapsack auction mechanism [Sin10], with the additional challenge of externalities introduced
by the Laplacian noise (see also Section 4).

Privacy and truthfulness in mechanism design. A series of interesting results follow
an orthogonal direction, namely, on the connection between privacy and truthfulness when
individuals have the ability to misreport their data. McSherry and Talwar [MT07], and Nissim
et al. [NST10] use privacy as a tool for mechanism design. Xiao [Xia11], Chen et al. [CCK+13]
and Nissim et al. [NOS12] design truthful mechanisms for agents that value privacy (using
differential privacy or other closely related definitions of privacy). As pointed out by Xiao
[Xia11], all these papers consider an unverified database, i.e., the mechanism designer cannot
verify the data reported by individuals and therefore must incentivize them to report truthfully.
Recent work on truthfully eliciting private data through a survey [LR12, RS12] also falls under
the unverified database setting [Xia11]. In contrast, our setting, as well as that of Ghosh and
Roth, and Fleischer et al. [FL12], is that of soliciting consent for use of data stored in a verified
database, in which individuals cannot lie about their data. This setting is particularly relevant
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to the context of online behavioral data: information on clicks, websites visited and products
purchased is collected and stored in real-time and cannot be retracted after the fact.

Correlation between privacy costs and data values. An implicit assumption in privacy
auctions as introduced in [GR11] is that the privacy costs ci are not correlated with the data
values di. This might not be true if, e.g., the data represents the propensity of an individual
to contract a disease. Ghosh and Roth [GR11] show that when the privacy costs are correlated
to the data no individually rational direct revelation mechanism can simultaneously achieve
non-trivial accuracy and differential privacy. As discussed in the beginning of this section, the
privacy cost of the release of behavioral data is predominantly due to the risk of a linkage
attack. It is reasonable in many cases to assume that this risk (and hence the cost of privacy
loss) is not correlated to, e.g., the user’s movie ratings. Nevertheless, due to its importance in
other settings such as medical data, more recent privacy auction models aim at handling such
correlation [LR12, RS12, FL12]; we leave generalizing our results to such privacy auction models
as future work.

2 Preliminaries

Let [k] = {1, · · · , k}, for any integer k > 0, and define I := [Rmin, Rmax] ⊂ R to be a bounded
real interval. Consider a database containing the information of n > 0 individuals. In particular,
the database comprises a vector d, whose entries di ∈ I, i ∈ [n], represent the private information
of individual i. Each entry di is a priori known to the database administrator, and therefore
individuals do not have the ability to lie about their private data. A data analyst with access
to the database would like to publicly release an estimate of the statistic s(d) of the form (1),
i.e. s(d) =

∑
i∈[n]widi, for some publicly known weight vector w = (w1, . . . , wn) ∈ Rn. For any

subset H ⊆ [n], we define w(H) :=
∑

i∈H |wi|, and denote by W := w([n]) =
∑n

i=1 |wi| the `1
norm of vector w. We denote the length of interval I by ∆ := Rmax−Rmin, and its midpoint by
R̄ := (Rmin +Rmax)/2. Without loss of generality, we assume that wi 6= 0 for all i ∈ [n]; if not,
since entries for which wi = 0 do not contribute to the linear predictor, it suffices to consider
the entries of d for which wi 6= 0.

2.1 Differential Privacy and Distortion

Similar to [GR11], we use the following generalized definition of differential privacy:

Definition 1. (Differential Privacy). A (randomized) function f : In → Rm is (ε1, . . . , εn)-
differentially private if for each individual i ∈ [n] and for any pair of data vectors d,d(i) ∈ In

differing in only their i-th entry, εi is the smallest value such that P[f(d) ∈ S] ≤ eεiP[f(d(i)) ∈ S]
for all S ⊂ Rm.

This definition differs slightly from the usual definition of ε-differential privacy [DMNS06,
Dwo06], as the latter is stated in terms of the worst case privacy across all individuals. More
specifically, according to the notation in [DMNS06, Dwo06], an (ε1, . . . , εn)-differentially private
function is ε-differentially private, where ε = maxi εi.

Given a deterministic function f , a well-known method to provide ε-differential privacy is to
add random noise drawn from a Laplace distribution to this function [DMNS06, Dwo06]. This
readily extends to (ε1, . . . , εn)-differential privacy.
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Lemma 1 ([DMNS06, Dwo06]). Consider a deterministic function f : In → R. Define f̂(d) :=
f(d) + Lap(σ), where Lap(σ) is a random variable sampled from the Laplace distribution with
parameter σ. Then, f̂ is (ε1, . . . , εn)-differentially private, where εi = Si(f)/σ, and Si(f) :=
maxd,d(i)∈In |f(d)− f(d(i))|, is the sensitivity of f to the i-th entry di, i ∈ [n].

Intuitively, the higher the variance σ of the Laplace noise added to f , the smaller εi, and
hence, the better the privacy guarantee of f̂ . Moreover, for a fixed σ, entries i with higher
sensitivity Si(f) receive a worse privacy guarantee (higher εi).

There is a natural tradeoff between the amount of noise added and the accuracy of the
perturbed function f̂ . To capture this, we introduce the notion of distortion between two
(possibly randomized) functions:

Definition 2. (Distortion). Given two functions f : In → R and f̂ : In → R, the distortion,
δ(f, f̂), between f and f̂ is given by

δ(f, f̂) := max
d∈In

E
[
|f(d)− f̂(d)|2

]
.

In our setup, the data analyst wishes to disclose an estimator function ŝ : In → R of the
linear predictor s. Intuitively, a good estimator ŝ should have a small distortion δ(s, ŝ), while
also providing good differential privacy guarantees.

2.2 Privacy Auction Mechanisms

Each individual i ∈ [n] has an associated cost function ci : R+ → R+, which determines the
cost ci(εi) incurred by i when an (ε1, . . . , εn)-differentially private estimate ŝ is released by the
analyst. As in [GR11], we consider linear cost functions, i.e., ci(ε) = viε, for all i ∈ [n]. We
refer to vi as the unit-cost of individual i. The unit-costs vi are not a priori known to the data
analyst. Without loss of generality, we assume throughout the paper that v1 ≤ . . . ≤ vn.

Given a weight vector w = (w1, . . . , wn) ∈ Rn, let Ms be a mechanism compensating indi-
viduals in [n] for their loss of privacy from the release of an estimate ŝ of the linear predictor
s(d). Formally, Ms takes as input a vector of reported unit-costs v = (v1, . . . , vn) ∈ Rn+ and a
budget B, and outputs

1. a payment pi ∈ R+ for every i ∈ [n], and

2. an estimator function ŝ : In → R+.

Assume that the estimator ŝ satisfies (ε1, . . . , εn)-differential privacy. A mechanism is budget
feasible if

∑
i∈[n] pi ≤ B, i.e., the payments made by the mechanism are within the budget B.

Moreover, a mechanism is individually rational if for all i ∈ [n], pi ≥ ci(εi) = viεi, i.e., payments
made by the mechanism exceed the cost incurred by individuals. Finally, a mechanism is truthful
if for all i ∈ [n], pi(vi, v−i) − viεi(vi, v−i) ≥ pi(v

′
i, v−i) − viεi(v

′
i, v−i), i.e., no individual can

improve her utility by misreporting her private unit-cost.
Ghosh and Roth motivate the linear dependence of costs ci on the privacy guarantees εi by

linking it directly to expected utility loss due to data disclosure [GR11]. Nevertheless, modeling
the privacy cost of an individual as a linear function of her privacy guarantee is not the only
possible choice, and has been criticized Chen et al. [CCK+13], and Nissim et al. [NOS12]. For
example, when data across multiple individuals are correlated, the cost function can depend
on the privacy guarantees provided to other individuals. Moreover, ε measures the worst-case
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effect on privacy, while the typical effect on an agent might be lower than the above choice. On
these grounds, the above works argue that it is more appropriate to treat such linear functions
as upper bounds on the costs incurred by privacy loss, which however further complicates the
design of incentive compatible mechanisms.

2.3 Outline of Our Approach

We denote by δMs := δ(s, ŝ) the distortion between s and the function output by the mechanism
Ms. Ideally, a mechanism should output an estimator that has small distortion. However,
the smaller the distortion, the higher the privacy violation and, hence, the more money the
mechanism needs to spend. As such, the objective of this paper is to design a mechanism with
minimal distortion, subject to the constraints of truthfulness, individual rationality, and budget
feasibility.

To address this question, in Section 3, we first establish a privacy-distortion tradeoff for
differentially-private estimators of the linear predictor. We then introduce a family of estimators,
Discrete Canonical Laplace Estimator Functions (DCLEFs), and show that they achieve a near-
optimal privacy-distortion tradeoff. This result allows us to limit our attention to DCLEF
privacy auction mechanisms, i.e., mechanisms that output a DCLEF ŝ. In Section 4, we present
a mechanism that is truthful, individually rational, and budget feasible, while also being near-
optimal in terms of distortion.

The above approach mirrors the approach followed by Ghosh and Roth [GR11] in the case
where the statistic s is the sum of bits. Ghosh and Roth also establish a privacy vs. accuracy
tradeoff among differentially private estimators for such statistics. Furthermore, they show that
a particular class of estimators achieve a close-to-optimal privacy vs. accuracy tradeoff, and sub-
sequently focus on the design of mechanisms outputing estimators from this class. Nevertheless,
the tradeoff and class of estimators developed by Ghosh and Roth cannot be readily extended
to privacy auctions for general linear predictors. The asymmetry of such functions requires the
introduction of the more general class of DCLEFs. Finally, in contrast to the multi-unit pro-
curement auction of [GR11], DCLEF privacy auction mechanisms are similar to the knapsack
mechanism of [Sin10], which makes distortion minimization a more challenging combinatorial
task.

3 Privacy-Distortion Tradeoff and Laplace Estimators

Recall that a good estimator should exhibit low distortion and simultaneously give good privacy
guarantees. In this section, we establish the privacy-distortion tradeoff for differentially-private
estimators of the linear predictor. Moreover, we introduce a family of estimators that exhibits
a near-optimal tradeoff between privacy and distortion. This will motivate our focus on privacy
auction mechanisms that output estimators from this class in Section 4.

3.1 Privacy-Distortion Tradeoff

There exists a natural tension between privacy and distortion, as highlighted by the following
two examples.

Example 1. Consider the estimator ŝ := R̄
∑n

i=1wi, where recall that R̄ = (Rmin +
Rmax)/2. This estimator guarantees perfect privacy (i.e., εi = 0), for all individuals.
However, δ(s, ŝ) = (W∆)2/4.
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Example 2. Consider the estimator function ŝ :=
∑n

i=1widi. In this case, δ(s, ŝ) =
0. However, εi =∞ for all i ∈ [n].

In order to formalize this tension between privacy and distortion, we define the privacy index
of an estimator as follows.

Definition 3. Let ŝ : In → R be any (ε1, . . . , εn)-differentially private estimator function for the
linear predictor. We define the privacy index, β(ŝ), of ŝ as

β(ŝ) := max

{
w(H) : H ⊆ [n] and

∑
i∈H

εi < 1/2

}
. (2)

The index β(ŝ) captures the weight of the individuals that have been guaranteed good privacy
by ŝ. Next we characterize the impossibility of having an estimator with a low distortion but a
high privacy index. Note that for Example 1, β(ŝ) = W , i.e., the largest value possible, while for
Example 2, β(ŝ) = 0. We stress that the selection of 1/2 as an upper bound in (2) is arbitrary;
Theorems 1 and 2 still hold if another value is used, though the constants involved will differ.

Our first main result, which is proved in Appendix A, establishes a trade-off between the
privacy index and the distortion of an estimator.

Theorem 1 (Trade-off between Privacy-index and Distortion). Let 0 < α < 1. Let ŝ : In → R
be an arbitrary estimator function for the linear predictor. If δ(s, ŝ) ≤ (αW∆)2/48 then β(ŝ) ≤
2αW .

In other words, if an estimator has low distortion, the weight of individuals with a good
privacy guarantee (i.e., a small εi) can be at most an α fraction of 2W .

3.2 Laplace Estimator Functions

Consider the following family of estimators for the linear predictor ŝ : In → R:

ŝ(d; a,x, σ) :=
n∑
i=1

widixi +
n∑
i=1

wiai(1− xi) + Lap(σ) (3)

where xi ∈ [0, 1], and each ai ∈ R is a constant independent of the data vector d. This
function family is parameterized by x,a and σ, and is a generalization of the Laplace estimators
considered by Ghosh and Roth [GR11]. The estimator ŝ results from distorting s in two ways: (a)
a randomized distortion by the addition of the Laplace noise, and (b) a deterministic distortion
through a linear interpolation between each entry di and some constant ai. Intuitively, the
interpolation parameter xi determines the extent to which the estimate ŝ depends on entry
di. Using Lemma 1 and the definition of distortion, it is easy to characterize the privacy and
distortion properties of such estimators.

Lemma 2. Given wi, i ∈ [n], let s(d) be the linear predictor given by (1), and ŝ an estimator
of s given by (3). Then,

1. ŝ is (ε1, . . . , εn)-differentially private, where εi = ∆|wi| xi
σ , i ∈ [n].

2. The distortion satisfies δ(s, ŝ) ≥
(

∆
2

∑n
i=1 |wi|(1−xi)

)2
+ 2σ2, with equality attained when

ai = R̄, for all i ∈ [n].
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The proof of this lemma can be found in Appendix B. Recall that ŝ interpolates between
the data di and a fixed value ai. The first statement of Lemma 2 implies that the constants ai
do not affect the differential privacy properties of ŝ. The second statement implies that, among
all estimators with given x, the distortion δ(s, ŝ) is minimized when ai = R̄ = 1

2(Rmin + Rmax)
for all i ∈ [n]. Together, these statements imply that it is always preferable to set all ai values
to R̄: this selection has the minimum distortion among all estimators of the form (3) under the
same privacy guarantees. This motivates us to define the family of Laplace estimator functions
as follows.

Definition 4. Given wi, i ∈ [n], the Laplace estimator function family (LEF) for the linear
predictor s is the set of functions ŝ : In → R, parameterized by x and σ, such that

ŝ(d; x, σ) =
n∑
i=1

widixi + R̄
n∑
i=1

wi(1− xi) + Lap(σ) (4)

We call a LEF discrete if xi ∈ {0, 1}. Furthermore, we call a LEF canonical if the Laplace
noise added to the estimator has a parameter of the form

σ = σ(x) := ∆

n∑
i=1

|wi|(1− xi) (5)

Recall that xi controls the dependence of ŝ on the entry di; thus, intuitively, the standard
deviation of the noise added in a canonical Laplace estimator is proportional to the “residual
weight” of data entries. Note that, by Lemma 2, the distortion of a canonical Laplace estimator
ŝ has the following simple form:

δ(s, ŝ) =
9

4
∆2
( n∑
i=1

|wi|(1− xi)
)2

=
9

4
∆2
(
W −

n∑
i=1

|wi|xi
)2
. (6)

Our next result establishes that there exists a discrete canonical Laplace estimator function
(DCLEF) with a small distortion and a high privacy index.

Theorem 2 (DCLEFs suffice). Let 0 < α < 1. Let

ŝ∗ := argmax
ŝ:δ(s,ŝ)≤(αW∆)2/48

β(ŝ)

be an estimator with the highest privacy index among all ŝ for which δ(s, ŝ) ≤ (αW∆)2/48.
There exists a DCLEF ŝ◦ : In → R such that δ(s, ŝ◦) ≤ (9/4)(αW∆)2, and β(ŝ◦) ≥ 1

2β(ŝ∗).

In other words, there exists a DCLEF that is within a constant factor, in terms of both
its distortion and its privacy index, from an optimal estimator ŝ∗. Theorem 2 is proved in
Appendix C and has the following immediate corollary:

Corollary 1. Consider an arbitrary estimator ŝ with distortion δ(s, ŝ) < (W∆)2/48. Then,
there exists a DCLEF ŝ◦ such that δ(s, ŝ◦) ≤ 108δ(s, ŝ) and β(ŝ◦) ≥ 1

2β(ŝ).

Proof. Apply Theorem (2) with α =
√

48δ(s, ŝ)/(W∆). In particular, for this α and ŝ as
in the theorem statement, we have that ŝ∗ := argmaxŝ′:δ(s,ŝ′)≤δ(s,ŝ) β(ŝ′), hence β(ŝ∗) ≥ β(ŝ).

Therefore, there exists a DCLEF ŝ◦ such that δ(s, ŝ◦) ≤ (9/4)(αW∆)2 ≤ 108δ(s, ŝ), and β(ŝ◦) ≥
1
2β(ŝ∗) ≥ 1

2β(ŝ).

Theorems 1 and 2 imply that, when searching for estimators with low distortion and high
privacy index, it suffices (up to constant factors) to focus on DCLEFs. Similar results were
derived in [GR11] for estimators of unweighted sums of bits.

9



4 Privacy Auction Mechanism

Motivated by Theorems 1 and 2, we design a truthful, individually rational, budget-feasible
DCLEF mechanism (i.e., a mechanism that outputs a DCLEF) and show that it is 5-approximate
in terms of accuracy compared with the optimal, individually rational, budget-feasible DCLEF
mechanism. Note that a DCLEF is fully determined by the vector x ∈ {0, 1}n. Therefore, we
will simply refer to the output of the DCLEF mechanisms described below as (x,p), as the
latter characterize the released estimator and the compensations to individuals.

4.1 An Optimal DCLEF Mechanism

Consider the problem of designing a DCLEF mechanism M that is individually rational and
budget feasible (but not necessarily truthful), and minimizes δM . Given a DCLEF ŝ, define
H(ŝ) := {i : xi = 1} to be the set of individuals that receive non-zero differential privacy
guarantees. Eq. (6) implies that δ(s, ŝ) = 9

4∆2(W − w(H(ŝ)))2. Thus, minimizing δ(s, ŝ) is
equivalent to maximizing w(H(ŝ)). Let (xopt,popt) be an optimal solution to the following
problem:

maximize S(x; w) =

n∑
i=1

|wi|xi

subject to: pi ≥ viεi(x), ∀i ∈ [n], (individual rationality)
n∑
i=1

pi ≤ B (budget feasibility)

xi ∈ {0, 1}, ∀i ∈ [n] (discrete estimator function)

(7)

where, by Lemma 2 and (5),

εi(x) =
∆|wi|xi
σ(x)

=
|wi|xi∑

i |wi|(1− xi)
(canonical property). (8)

A mechanism Mopt that outputs (xopt,popt) will be an optimal, individually rational, budget
feasible (but not necessarily truthful) DCLEF mechanism. Let OPT := S(xopt; w) be the opti-
mal objective value of (7). We use OPT as the benchmark to which we compare the (truthful)
mechanism we design below. Without loss of generality, we make the following assumption:

Assumption 1. For all i ∈ [n], |wi|vi/(W − |wi|) ≤ B.

Observe that if an individual i violates this assumption, then ci(εi(x)) > B for any x output
by a DCLEF mechanism that sets xi = 1. In other words, no DCLEF mechanism (including
Mopt) can compensate this individual within the analyst’s budget and, hence, will set xi = 0.
Therefore, it suffices to focus on the subset of individuals for whom the assumption holds.

4.2 A Truthful DCLEF Mechanism

To highlight the challenge behind designing a truthful DCLEF mechanism, observe that if the
privacy guarantees were given by εi(x) = xi rather than (8), the optimization problem (7)
would be identical to the budget-constrained mechanism design problem for knapsack studied
by Singer [Sin10]. In the reverse-auction setting of [Sin10], an auctioneer purchases items valued
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Algorithm 1 FairInnerProduct(v,w, B)

Let k be the largest integer such that B
w([k]) ≥

vk
W−w([k]) .

Let i∗ := argmaxi∈[n] |wi|.
Let p̂ be as defined in (9).
if |wi∗ | >

∑
i∈[k]\{i∗} |wi| then

Set O = {i∗}.
Set pi∗ = p̂ and pi = 0 for all i 6= i∗.

else
Set O = [k].
Pay each i ∈ O, pi = |wi|min{ B

w([k]) ,
vk+1

W−w([k])}, and for i /∈ O, pi = 0.
end if
Set xi = 1 if i ∈ O and xi = 0 otherwise.

at fixed costs vi by the individuals that sell them. Each item i is worth |wi| to the auctioneer,
while the auctioneer’s budget is B. The goal of the auctioneer is to maximize the total worth
of the purchased set of items, i.e., S(x; w). Singer presents a truthful mechanism that is 6-
approximate with respect to OPT . However, in our setting, the privacy guarantees εi(x) given
by (8) introduce externalities into the auction. In contrast to [Sin10], the εi’s couple the cost
incurred by an individual i to the weight of other individuals that are compensated by the
auction, making the mechanism design problem harder. This difficulty is overcome by our
mechanism, which we call FairInnerProduct, described in Algorithm 1.

The mechanism takes as input the budget B, the weight vector w, and the vector of unit-
costs v, and outputs a set O ⊂ [n], that receive xi = 1 in the DCLEF, as well as a set of
payments for each individual in O. Our construction uses a greedy approach similar to the
Knapsack mechanism in [Sin10]. In particular, it identifies users that are the “cheapest” to
purchase. To ensure truthfulness, it compensates them within budget based on the unit-cost of
the last individual that was not included in the set of compensated users. As in greedy solutions
to knapsack, this construction does not necessarily yield a constant approximation w.r.t. OPT;
for that, the mechanism needs to sometimes compensate only the user with the highest absolute
weight |wi|. In such cases, the payment of the user of the highest weight is selected so that she
has no incentive to lie about here true unit cost.

Recall that v1 ≤ . . . ≤ vn. The mechanism defines i∗ := argmaxi∈[n] |wi| as the individual

with the largest |wi|, and k as the largest integer such that B
w([k]) ≥

vk
W−w([k]) . Subsequently,

the mechanism either sets xi = 1 for the first k individuals, or, if |wi∗ | >
∑

i∈[k]\{i∗} |wi|, sets
xi∗ = 1. In the former case, individuals i ∈ [k] are compensated in proportion to their absolute
weights |wi|. If, on the other hand, only xi∗ = 1, the individual i∗ receives a payment p̂ defined
as follows: Let

S−i∗ :=
{
t∈ [n]\{i∗} :

B∑
i∈[t]\{i∗}|wi|

≥ vt
W −

∑
i∈[t]\{i∗}|wi|

and
∑

i∈[t]\{i∗}

|wi| ≥ |wi∗ |
}
.

If S−i∗ 6= ∅, then let r := min{i : i ∈ S−i∗}. Define

p̂ :=

{
B, if S−i∗ = ∅

|wi∗ |vr
W−|wi∗ |

, otherwise
(9)

The next theorem states that FairInnerProduct has the properties we desire.
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Theorem 3. FairInnerProduct is truthful, individually rational and budget feasible. It is 5-
approximate with respect to OPT . Further, it is 2-approximate when all weights are equal.

The theorem is proved in Appendix D. We note that the truthfulness of the knapsack mecha-
nism in [Sin10] is established via Myerson’s characterization of truthful single-parameter auctions
(i.e., by showing that the allocation is monotone and the payments are threshold). In contrast,
because of the coupling of costs induced by the Laplace noise in DCLEFs, we are unable to use
Myerson’s characterization and, instead, give a direct argument about truthfulness.

We prove a 5-approximation by using the optimal solution of the fractional relaxation of (7).
This technique can also be used to show that the knapsack mechanism in [Sin10] is 5-approximate
instead of 6-approximate. FairInnerProduct generalizes the Ghosh-Roth mechanism; in the
special case when all weights are equal FairInnerProduct reduces to the Ghosh-Roth mechanism,
which, by Theorem 3, is 2-approximate with respect to OPT . In fact, our next theorem, proved
in Appendix E, states that the approximation ratio of a truthful mechanism is lower-bounded
by 2.

Theorem 4 (Impossibility of Approximation). For all ε > 0, there is no truthful, individually
rational, budget feasible DCLEF mechanism that is also 2− ε-approximate with respect to OPT .

Our benchmark OPT is stricter than that used in [GR11]. In particular, Ghosh and Roth
show that their mechanism is optimal among all truthful, individually rational, budget-feasible,
and envy-free mechanisms. In fact, the example we use to show hardness of approximation is
a uniform weight example, implying that the lower-bound also holds for uniform weight case.
Indeed, the mechanism in [GR11] is 2-approximate with respect to OPT , although it is optimal
among individually rational, budget feasible mechanisms that are also truthful and envy free.

5 Discussion on Linear Predictors

As discussed in the introduction, a statistic s(d) of the form (1) can be viewed as a linear
predictor and is thus of particular interest in the context of recommender systems. We elaborate
on this interpretation in this section.

Recall that each individual i ∈ [n] = {1, . . . , n} is endowed with a public vector yi ∈ Rm,
which includes m publicly known features about this individual, and let Y = [yi]i∈[n] ∈ Rn×m be
a matrix comprising the public feature vectors. Consider again a new individual, not belonging
to the database, whose public feature profile is y ∈ Rm. Beyond, k-NN, there are several
predictors that take the form (1), for weights w = w(y,Y):

• Nadaranya-Watson Weighted Average. In contrast to k-NN, the Nadaranya-Watson weighted
average leverages all data in the database, weighing more highly data closer to y. The
general form of the prediction is s(d) =

∑n
i=1K(y,yi)di/

∑n
i′=1K(y,yi′) where the kernel

K : Rm × Rm → R+ is a function decreasing in the distance between its argument (e.g.,
K(y,y′) = e−‖y−y

′‖22).

• Ridge Regression. In ridge regression, the analyst first fits a linear model to the data, i.e.,
solves the optimization problem

minb∈Rm
∑n

i=1

(
di − 〈yi,b〉

)2
+ λ‖b‖22, (10)
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where λ ≥ 0 is a regularization parameter, enforcing that the vector b takes small values.
The prediction is then given by the inner product 〈y,b〉. The solution to (10) is given by
b = (YTY + λI)−1YTd; as such, the predicted value for a new user with feature vector y
is given by s(d) = 〈y,b〉 = yT (YTY + λI)−1YTd.

• Support Vector Machines. A more general regression model assumes that the private values
di can be expressed in terms of the public vectors yi as a linear combination of a set of
basis functions h` : Rm → R, ` = 1, . . . , L, i.e., the analyst first solves the optimization
problem

minb∈RL
∑n

i=1

(
di −

∑L
`=1 b`h`(yi)

)2
+ λ‖b‖22 (11)

For y,y′ ∈ Rm, denote by K(y,y′) =
∑L

`=1 h`(y)h`(y) the kernel of the space spanned by
the basis functions. Let K(Y) = [K(yi,yj)]i,j∈[n] ∈ Rn×n be the n× n matrix comprising
the kernel values evaluated at each pair of feature vectors in the database, and k(y,Y) =
[K(y,yi)]i∈[n] ∈ Rn the kernel values w.r.t. the new user. The solution to (11) yields a

predicted value for the new individual of the form: s(d) = (k(y,Y))T (K(Y ) + λI)−1d.

In all four examples, including k-NN, the prediction s(d) is indeed of the form (1). Note
that the weights are non-negative in our first two examples, but may assume negative values in
the latter two.

6 Conclusion and Future Work

We considered the setting of an auction, where a data analyst wishes to buy, from a set of n
individuals, the right to use their private data di ∈ R, i ∈ [n], in order to cheaply obtain an accu-
rate estimate of a statistic. Motivated by recommender systems and, more generally, prediction
problems, the statistic we consider is a linear predictor with publicly known weights. The statis-
tic can be viewed as a prediction of the unknown data of a new individual based on the database
entries. We formalized the trade-off between privacy and accuracy in this setting; we showed
that obtaining an accurate estimate necessitates giving poor differential privacy guarantees to
individuals whose cumulative weight is large. We showed that DCLEF estimators achieve an
order-optimal trade-off between privacy and accuracy, and, consequently, it suffices to focus on
DCLEF mechanisms. We use this observation to design a truthful, individually rational, budget
feasible mechanism under the constraint that the analyst has a fixed budget. Our mechanism
can be viewed as a proportional-purchase mechanism, i.e., the privacy εi guaranteed by the
mechanism to individual i is proportional to her weight |wi|. We show that our mechanism is
5-approximate in terms of accuracy compared to an optimal (possibly non-truthful) mechanism,
and that no truthful mechanism can achieve a 2− ε approximation, for any ε > 0.

Our formalization of a tradeoff between privacy and accuracy builds upon the work of Ghosh
and Roth, and led to the introduction of the distortion of an estimator, as well as its privacy
index. As a worst-case expected variance, our definition of distortion naturally generalizes to
estimators of non-linear statistics. The privacy index is on the other hand the sum of weights
among individuals receiving a sufficiently good privacy guarantee. Intuitively, such weights
capture the effect that each individual’s data has in the evaluation of the linear statistic. A
natural question to ask if whether this definition of a privacy index, as well as the corresponding
tradeoff between privacy and distortion, can be extended to a more general class of statistics. For
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example, it would be interesting to see if such tradeoffs can be established, e.g., for a privacy
index in which weights are replaced by worst or average case marginal contributions to the
statistic.

Finally, it is natural to ask if our present results apply under weaker assumptions on how costs
are associated with differential privacy guarantees. In light of recent results [CCK+13, NOS12],
a possible starting point for such an investigation is considering costs that are bounded by–rather
than equal to–functions that depend linearly on the privacy guarantees.
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A Proof of Theorem 1 (Trade-off between Privacy-index and
Distortion)

By Definition 3, the privacy index β(ŝ) for an estimator ŝ is the optimal objective value of
the following optimization problem: maximize

∑n
i=1 |wi|xi where

∑n
i=1 εixi <

1
2 and for all

i ∈ [n], xi ∈ {0, 1}.
Interpreting |wi| as the value, and εi as the size of object i, the above problem can be viewed

as a 0/1 knapsack problem where the size of the knapsack is 1/2. Assume for this proof, without
loss of generality, that ε1

|w1| ≤ . . . ≤ εn
|wn| . We define some notation that is needed in the proof.

Let h(ŝ) := max
{
j ∈ [n] :

εj
|wj | <

1
2w([j])

}
if ε1
|w1| <

1
2|w1| and h(ŝ) := 0 otherwise. Observe that

0 ≤ h(ŝ) ≤ n. Next, define

î := argmax
i∈[n]:εi<1/2

|wi|, and H(ŝ) :=

{
[h(ŝ)], if w([h(ŝ)]) ≥ |wî|,
{̂i}, otherwise.

(12)

The following then holds.

Lemma 3. 2w(H(ŝ)) ≥ β(ŝ).
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Proof. H(ŝ) is a 2-approximate greedy solution to the 0/1 knapsack problem given by [MT90,

Section 2.4]. We include a proof for completeness. Observe that
∑h(ŝ)

i=1 εi <
1
2 , and

∑h(ŝ)+1
i=1 εi ≥

1
2 . Also, since the “objects” are arranged in increasing order of size per value, it follows that
w([h(ŝ)]) + wh(ŝ)+1 ≥ OPT . Therefore,

H(ŝ) = max{w([h(ŝ)]), wî} ≥
w([h(ŝ)]) + wî

2
≥
w([h(ŝ)]) + wh(ŝ)+1

2
≥ OPT

2

Now we are ready to prove that if the distortion δ(s, ŝ) is small, then w(H(ŝ)) is also small,
which, together with Lemma 3, proves the theorem. In our proof, we make use of the notion of
k-accuracy defined in [GR11, Definition 2.6]. For ŝ : In → R, let

kŝ := min

{
k ∈ R+ : ∀d ∈ In,P[|s(d)− ŝ(d)| ≥ k] ≤ 1

3

}
(13)

Lemma 4. Let 0 < α < 1. If w(H(ŝ)) > αW then kŝ > αW∆/4.

Proof. Assume for the sake of contradiction that w(H(ŝ)) > αW and kŝ ≤ αW∆/4. For a data
vector d, let z = s(d) =

∑
iwidi and ẑ = ŝ(d). Also, let S := {y ∈ R : |y − z| < kŝ}. Then, by

(13), P[ẑ ∈ S] ≥ 2/3.
The set H(ŝ) can be partitioned as follows: H(ŝ) = H+(ŝ)∪H−(ŝ), with H+(ŝ)∩H−(ŝ) =

{∅}, where the disjoint subsets H+(ŝ) and H−(ŝ) are defined by

H+(ŝ) = {i ∈ [n] : di ≤ R̄ and wi ≤ 0} ∪ {i ∈ [n] : di > R̄ and wi > 0},
H−(ŝ) = {i ∈ [n] : di ≤ R̄ and wi > 0} ∪ {i ∈ [n] : di > R̄ and wi ≤ 0}.

(14)

Then w(H(ŝ)) = w(H+(ŝ)) + w(H−(ŝ)). Thus, one of the subsets H+(ŝ) and H−(ŝ) must
have a total weight greater or equal to w(H(ŝ))/2. Without loss of generality, assume that
w(H+(ŝ)) ≥ w(H(ŝ))/2.

Consider another data vector d′ where d′i = di if i ∈ [n] \H+(ŝ), while if i ∈ H+(ŝ),

d′i =

{
di + ∆

2 , if di ≤ R̄ and wi ≤ 0

di − ∆
2 , if di > R̄ and wi > 0

(15)

Let z′ := s(d′) =
∑n

i=1wid
′
i and let ẑ′ = ŝ(d′). Also, let S′ := {y ∈ R : |y − z′| < kŝ}. From eq.

(15), we have

|z − z′|=
∣∣ ∑
i∈H+(ŝ)

wi(di − d′i)
∣∣= ∣∣ ∑

i∈H+(ŝ)

|wi|∆/2
∣∣= ∆

2
w(H+(ŝ)) ≥ ∆

4
w(H(ŝ)) > α

∆

4
W. (16)

Since kŝ ≤ αW∆/4, eq. (16) implies that S and S′ are disjoint.
Since ŝ is (ε1, . . . , εn)-differentially private, and d and d′ differ in exactly the entries in H+(ŝ),

P[ẑ′ ∈ S] ≥ exp
(
−
∑

i∈H+(ŝ) εi

)
P[ẑ ∈ S] ≥ exp

(
−
∑

i∈H+(ŝ) εi

)
2
3 . Note that

∑
i∈[h(ŝ)] εi <∑

i∈[h(ŝ)]
|wi|

2w([h(ŝ)]) = 1
2 , and also ε̂i < 1/2. Therefore,

∑
i∈H(ŝ) εi < 1/2. Since H+(ŝ) ⊂ H(ŝ), we

have
∑

i∈H+(ŝ) εi ≤
∑

i∈H(ŝ) εi < 1/2.

This implies P[ẑ′ ∈ S] ≥ exp
(
−
∑

i∈H+(ŝ) εi

)
2
3 > exp

(
−1

2

)
2
3 = 2

3
√
e
> 1

3 . Given that S and

S′ are disjoint, P[ẑ′ ∈ S] > 1/3 implies that P[ẑ′ /∈ S′] > 1/3, which contradicts the assumption
that kŝ ≤ αW∆/4.
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Next we relate kŝ-accuracy to the distortion δ(s, ŝ):

Lemma 5. For s(d) as defined in (1) and a function ŝ : In → R, kŝ ≤
√

3δ(s, ŝ).

Proof. Observe that for all k ≥
√

3δ(s, ŝ), P[|s(d)− ŝ(d)| ≥ k] ≤ P[|s(d)− ŝ(d)| ≥
√

3δ(s, ŝ)] ≤
E[|s(d)−ŝ(d)|2]

3δ(s,ŝ) ≤ 1
3 where the second step follows from Markov’s inequality. This implies kŝ ≤√

3δ(s, ŝ).

Corollary 2. If w(H(ŝ)) > αW then δ(s, ŝ) > (αW∆)2/48.

Proof. The corollary follows from Lemma 4 and Lemma 5.

Thus from Corollary 2, we have that if δ(s, ŝ) ≤ (αW∆)2/48, then w(H(ŝ)) ≤ αW . Since
w(H(ŝ)) ≥ 1

2β(ŝ) (from Lemma 3), it implies if δ(s, ŝ) ≤ (αW∆)2/48, then 1
2β(ŝ) ≤ αW . This

concludes the proof of Theorem 1.

B Proof of Lemma 2

For the first part of this lemma, observe that the sensitivity of
∑

iwi[xidi + (1− xi)ai] w.r.t. i
is Si(ŝ) = ∆|wi|xi. The differential privacy guarantee therefore follows from Lemma 1.

To obtain the lower bound on the distortion, observe that substituting the expressions for s
and ŝ in the expression for δ(s, ŝ), we get

δ(s, ŝ) = max
d∈In

E[|s(d)− ŝ(d; a,x, σ)|2]

= max
d∈In

E
[( n∑

i=1

widi(1− xi)−
n∑
i=1

wiai(1− xi)− z
)2]

(where z ∼ Lap(σ))

= max
d∈In

( n∑
i=1

wi(1− xi)(di − ai)
)2

+ 2σ2 (since E[z] = 0;E[z2] = 2σ2)

= 2σ2 + max
d∈In

( n∑
i=1

γi(di − ai)
)2

(where γi := wi(1− xi))

= 2σ2 +
(

max
d∈In

∣∣ n∑
i=1

γi(di − ai)
∣∣)2

Observe that maxd∈In |f(d)| = max
{∣∣maxd∈In f(d)

∣∣, ∣∣mind∈In f(d)
∣∣} for any continuous func-

tion f : In → R. Therefore,

δ(s, ŝ) = 2σ2 +
(

max
{∣∣max

d∈In

n∑
i=1

γi(di − ai)
∣∣, ∣∣min

d∈In

n∑
i=1

γi(di − ai)
∣∣})2

= 2σ2 +
(

max
{∣∣γ(+)Rmax + γ(−)Rmin −

n∑
i=1

γiai
∣∣, ∣∣γ(+)Rmin + γ(−)Rmax −

n∑
i=1

γiai
∣∣})2,

where γ(+) :=
∑n

i:γi≥0 γi, and γ(−) :=
∑n

i:γi<0 γi. Observe that, for any a, b, c,∈ R, it is true

that max(|a − c|, |b − c|) ≥ |a−b|
2 with equality attained at c = a+b

2 . Applying this for a =

γ(+)Rmax + γ(−)Rmin, b = γ(+)Rmin + γ(−)Rmax and c =
∑n

i=1 γiai we get mina∈Rn δ(s, ŝ) ≥
2σ2 + (γ+−γ−)(Rmax−Rmin)

2 = 2σ2 +
(

∆
2

∑n
i=1 |wi|(1−xi)

)2
, with equality attained when

∑
i γiai =

(γ+ + γ−)(Rmax +Rmin)/2 =
∑

i γiR̄, which holds for ai = R̄.
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C Proof of Theorem 2 (DCLEFs Suffice)

Consider the function

ŝ◦(d) :=
∑
i/∈H◦

widi + R̄
∑
i∈H◦

wi + Lap(w(H◦)),

where
H◦ := argmax

H:H⊆[n] and w(H)≤αW
w(H),

is a subset of [n] with maximal weight among all sets of weight at most αW . We can write ŝ◦ as

ŝ◦(d; x) :=
n∑
i=1

widixi + R̄
n∑
i=1

wi(1− xi) + Lap(w(H◦)),

where xi = 0 for all i ∈ H◦ and xi = 1 otherwise. Hence, ŝ◦ is a DCLEF and

δ(s, ŝ◦)
Lem. 2

=
9

4
∆2

(
n∑
i=1

|wi|(1− xi)

)2

=
9

4
∆2 (w(H◦))2 ≤ 9

4
(αW∆)2.

Let ŝ∗ be the estimator with the highest privacy index defined at the statement of the theorem.
Since, by the definition of ŝ∗, δ(s, ŝ∗) ≤ (αW∆)2/48, it follows from Lemma 5 that kŝ∗ ≤
αW∆/4. Let H(ŝ∗) be as defined in (12). Then, w(H(ŝ∗)) ≤ αW ; otherwise, Lemma 4 would
imply that kŝ∗ > αW∆/4, a contradiction. Moreover, w(H◦) ≥ w(H(ŝ∗)) ≥ 1

2β(ŝ∗): the first
inequality follows by the definition of H◦ and the fact that w(H(ŝ∗)) ≤ αW , and the second
from Lemma 3. On the other hand, β(ŝ◦) ≥ w(H◦), as ŝ◦ is 0-differentially private for every
i ∈ H◦. It thus follows that β(ŝ◦) ≥ 1

2β(ŝ∗).

D Proof of Theorem 3

D.1 Truthfulness, Individual Rationality, and Budget Feasibility

In this section, we prove that FairInnerProduct is truthful, individually rational, and budget
feasible. We first define

S1 :=

{
t ∈ [n] \ {i∗} :

B∑
i∈[t]\{i∗} |wi|

≥ vt
W −

∑
i∈[t]\{i∗} |wi|

}
and

S2 :=

t ∈ [n] \ {i∗} :
∑

i∈[t]\{i∗}

|wi| ≥ |wi∗ |

 .

Observe that S−i∗ = S1 ∩ S2.

Proposition 1. FairInnerProduct is budget feasible.

Proof. When O = {i∗} and p̂ = B, the mechanism is trivially budget feasible. If p̂ = |wi∗ |vr
W−|wi∗ |

then observe that since r ∈ S−i∗ , this implies r ∈ S1 and r ∈ S2. Therefore, p̂ = |wi∗ |vr
W−|wi∗ |

≤
|wi∗ |vr

W−
∑
i∈[r]\{i∗} |wi|

≤ |wi∗ |B∑
i∈[r]\{i∗} |wi|

≤ B where the second inequality holds because r ∈ S1 and the

last inequality because r ∈ S2. When O = [k], the sum of the payments made by the mechanism
is given by

∑
i≤k pi ≤

∑
i≤k |wi|

B
w([k]) = B

w([k])

∑
i≤k |wi| = B.
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Proposition 2. If i∗ > k + 1 and |wi∗ | >
∑

i∈[k]\{i∗} |wi|, then S−i∗ = ∅.

Proof. Observe that if i∗ > k+ 1 and |wi∗ | >
∑

i∈[k]\{i∗} |wi|, then S1 = [k] and S2∩ [k] = ∅.

Proposition 3. If |wi∗ | >
∑

i∈[k]\{i∗} |wi| and S−i∗ 6= ∅, then r > i∗.

Proof. From Proposition 2, S−i∗ 6= ∅ implies either i∗ ≤ k + 1 or |wi∗ | ≤
∑

i∈[k]\{i∗}wi. Since
the latter is false, it must be that i∗ ≤ k + 1. In that case, S2 ∩ [k] = ∅. Therefore r > k. If
i∗ = k + 1, then for all j ∈ S2, j ≥ k + 2. Therefore r ≥ k + 2.

Proposition 4. FairInnerProduct is individually rational.

Proof. We divide the proof into two cases:
Case I: O = [k]. We know that B/w([k]) ≥ vk/(W − w([k])) (by construction) and vk+1 ≥ vk
(by definition). Therefore, for all i ≤ k, pi ≥ |wi|vk

W−w([k]) ≥
|wi|vi

W−w([k]) = ci(εi).

Case II: O = {i∗}. If pi∗ = B, then the mechanism is individually rational by Assumption 1.

If pi∗ = |wi∗ |vr
W−|wi∗ |

, then, by Proposition 3, vr ≥ vi∗ and therefore the mechanism is individually
rational.

Proposition 5. FairInnerProduct is dominant-strategy truthful.

Proof. Fix any v and assume that user i reports a value z 6= vi, while the remaining values v−i
remain the same. Let u be the resulting vector of values, i.e., ui = z and uj = vj , for j 6= i.
The vector u induces a new ordering of the users in terms of their reported values ui, i ∈ [n]; let
π : [n]→ [n] be the permutation indicating the position of users under the new ordering. That
is, π is 1-1 and onto such that if uj < uj′ then π(j) < π(j′), for all j, j′ ∈ [n]. For given j ∈ [n],
we denote the set of users preceding j under this ordering by Pj = {j′ : π(j′) ≤ π(j)}. Note
that al j′ ∈ Pj satisfy u′j ≤ uj . Observe that if z > vi then

w(Pj) =


w([j]), for all j < i

w([j])− |wi|, for all j > i s.t. π(j) < π(i)

w([i]) + w({` : ` > i ∧ π(`) < π(i)}), for j = i

w([i]), for allj > i s.t. π(j) > π(i)

(17)

while if z < vi then

w(Pj) =


w([j]), for all j < i s.t. π(j) < π(i)

w([i])− w({` : ` < i ∧ π(`) > π(i)}), for j = i

w([j]) + |wi|, for all j < i s.t. π(j) > π(i)

w([i]), for all j > i

(18)

Let Mπ =
{
j ∈ [n] : B

w(Pj)
≥ uj

W−w(Pj)

}
where W = w([n]). Then, by (17), if z > vi then

w(Pj) ≤ w([j]) for j 6= i while w(Pi) ≥ w([i]). As a result, if z > vi, then

for j 6= i, if j ∈ [k], then j ∈Mπ (19a)

if i /∈ [k], then i /∈Mπ (19b)

19



Similarly, from (18), if z < vi, then

for j 6= i, if j /∈ [k], then j /∈Mπ (20a)

if i ∈ [k], then i ∈Mπ (20b)

Observe that, given the value vector u, the mechanism will output Oπ = {i∗}, if |w∗i | >
w(Mπ \ {i∗}), and Oπ = Mπ otherwise. If Oπ = Mπ, users j ∈ Mπ are compensated by

pj = wj min
{

B
w(Mπ) ,

min`:`/∈Mπ u`
W−w(Mπ)

}
. If Oπ = {i∗}, the latter is compensated by p̂ given by (9).

We consider the following cases:
Case I: Oπ = Mπ. If i /∈ Mπ, then pi = εi = 0, so since FairInnerProduct is individually
rational, i has no incentive to report z. Suppose thus that i ∈ Mπ. We consider the following
subcases:
Case I(a): i /∈ [k]. Then vi ≥ vk+1. Since i ∈Mπ but i /∈ [k], (19) implies that z < vi. By (20)
k + 1 /∈Mπ. Thus pi ≤ |wi|vk+1/w(Mπ) ≤ |wi|vi/w(Mπ).
Case I(b): i ∈ [k]. We will first show that Mπ \ [k] = ∅. Suppose, for the sake of contradiction,
that Mπ \ [k] 6= ∅. Then Mπ \ [k] must contain an element different than i; this, along with (20)
implies that z > vi. If π(i) < π(k+1), then by (17) w(Pj) = w([j]) and j /∈Mπ for all j ≥ k+1,
which contradicts that Mπ \ [k] is non-empty. Hence, π(i) > π(k+ 1); this however implies that
w(Pi) ≥ w([k+ 1]), by (17), and that z ≥ vk+1. Thus B

w(Pi)
≤ B

w([k+1]) <
vk+1

W−w([k+1]) ≤
z

W−w(Pi)
,

so i /∈Mπ, a contradiction. Hence Mπ \ [k] = ∅.
Next we will show that the original output O = [k]. Suppose, for the sake of contradiction,

that O = {i∗}. Then |wi∗ | > w([k] \ {i∗}) while |wi∗ | ≤ w(Mπ \ {i∗}). Thus, Mπ \ [k] 6= ∅, a
contradiction. Thus, O = [k].

If Oπ = Mπ = [k], then since O = [k], user i receives the same payoff, so it has no incentive
to report z. Suppose that Mπ 6= [k]. Since Mπ \ [k] = ∅, it must be that [k] \Mπ 6= ∅. By (19),
this implies z < vi. If i < k, (18) implies that k ∈ Mπ and so do all j s.t. π(j) < π(k). Thus,
[k] = Mπ, a contradiction. If i = k and z < vi, then it is possible that j /∈ Mπ for some j < k.

Thus, pi ≤ |wi|vk
w(Mπ) = |wi|vi

w(Mπ) and so i has no incentive to report z.

Case II. Oπ = {i∗}. If i 6= i∗, then i’s payoff is obviously zero, so it has no incentive to
report z. Suppose thus that i = i∗. We consider the following two subcases.
Case II(a). O = {i∗}. Observe that S−i∗ and p̂ do not depend on vi∗ . Thus, since O = {i∗}, i
receives the same payment p̂, so it has no incentive to misreport its value.
Case II(b) O = [k]. Then |wi∗ | ≤ w([k] \ {i∗}) while |wi∗ | > w(Mπ \ {i∗}). Thus, [k] \Mπ must
contain an element different than i∗. From (19), this implies that z < vi. If i < k, (18) implies
that k ∈Mπ and so do all j s.t. π(j) < π(k). Thus, [k] = Mπ, a contradiction.

Assume thus that i ≥ k. Then vi ≥ vk. Let j∗ = k if i > k and j∗ = k − 1 if i = k. Observe
that j∗ ∈ S−i∗ : indeed, it is in S1 since i ∈ [k], by the definition of k, and it is in S2 because

|wi∗ | ≤ w([k] \ {i∗}). Hence p̂ ≤ |wi|vj∗
W−|wi| ≤

wivk
W−|wi| ≤

|wi|vi
W−|wi| so i’s payoff is at most zero, so it

has no incentive to misreport its value.

D.2 Approximation Ratio

In this section we prove that FairInnerProduct is 5-approximate with respect to OPT .
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D.2.1 Optimal Continuous Canonical Laplace Mechanism

We first characterize an individually rational, budget feasible, continuous canonical Laplace
mechanism that has optimal distortion. Consider the fractional relaxation of (7).

maximize

n∑
i=1

|wi|xi (21a)

subject to pi ≥ ci(εi) = viεi(x), ∀i ∈ [n] (21b)
n∑
i=1

pi ≤ B (21c)

0 ≤ xi ≤ 1, ∀i ∈ [n] (21d)

where εi(x) = |wi|xi∑
i |wi|(1−xi)

. A budget feasible, individually rational, (but not necessarily discrete

or truthful) canonical Laplace mechanism for the inner product has a minimal distortion among
all such mechanisms if given input (v,w, B) it outputs (x∗,p∗), where the latter constitute
an optimal solution to the above problem. This characterization will yield the approximation
guarantee of the DCLEF mechanism1.

Lemma 6. Recall that v1 ≤ v2 ≤ . . . ≤ vn. For 0 ≤ k ≤ n, define p(k) :=
∑n

i=k+1 |wi|, if

0 ≤ k ≤ n − 1, and p(n) := 0. For 0 ≤ k ≤ n, define q(0) := 0, and q(k) :=
∑k

i=1 vi|wi|, if
1 ≤ k ≤ n. Define ` := min {k : ∀i > k, q(i)−Bp(i) > 0} and let

x∗i :=


1, if i ≤ `

Bp(`)−q(`)
(v`+1+B)|w`+1| , if i = `+ 1

0, if i > `+ 1

, and p∗i = vi|wi|x∗i /σ(x∗) i ∈ [n].

Then (x∗,p∗) is an optimal solution to (21).

Proof. We show first that the quantities ` and x∗i are well defined. For p(i), q(i), i ∈ {0, . . . , n},
as defined in the statement of the theorem, observe that g(i) = q(i)−Bp(i) is strictly increasing
and that g(0) < 0 while g(n) > 0. Hence, ` is well defined; in particular, ` ≤ n − 1. The
monotonicity of g implies that g(i) ≤ 0 for all 0 ≤ i ≤ ` and g(i) > 0 for i > `. For a ∈ [0, 1], let
h(a) = q(`)+v`+1|w`+1|a−B(p(`+1)+|w`+1|(1−a)). Then h(0) = g(`) ≤ 0 and h(1) = g(`+1) >
0. As h(a) is continuous and strictly increasing in the reals, there exists a unique a∗ ∈ [0, 1]
s.t. h(a) = 0; since h is linear, it is easy to verify that a∗ = q(`)−Bp(`)/(v` +B)|w`+1| = x∗`+1

and, hence, x∗`+1 ∈ [0, 1]. To solve (21), we need only consider cases for which constraint (21b) is
tight, i.e., pi = viεi(x). Any solution for which (21b) is not tight can be converted to a solution
where it is; this will only strengthen constraint (21c), and will not affect the objective. Thus,
(21) is equivalent to:

Max. F (x) =
n∑
i=1

|wi|xi (22a)

subj. to

n∑
i=1

vi|wi|xi −B
n∑
i=1

wi(1− xi) ≤ 0, x ∈ [0, 1]n (22b)

1An analogous characterization of the budget-limited knapsack mechanism in [Sin10] can be used to show that
the mechanism is 5-approximate instead of 6-approximate.
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It thus suffices to show that x∗ is an optimal solution to (22). The latter is a linear program
and its Lagrangian is

L(x, λ, µ, ν) = −F (x) + λ
( n∑
i=1

vi|wi|xi −B
n∑
i=1

|wi|(1− xi)
)

+
n∑
i=1

µi(xi − 1)−
n∑
i=1

νixi.

It is easy to verify that x∗ satisfies the KKT conditions of (22) with λ∗ = 1
v`+1+B , µ∗i =

1(i≤`) ·
v`+1−vi
v`+1+B |wi|, and ν∗i = 1(i>`+1) ·

vi−v`+1

v`+1+B |wi|.

A canonical Laplace mechanism that outputs (x∗,p∗) given by Lemma 6 would be optimal.
Moreover, the objective value S(x∗; w) ≥ OPT .

Proposition 6. Let ` be as is defined in Lemma 6, and k as defined in FairInnerProduct. Then,
` ≥ k.

Proof. Assume that ` < k. Then

B(W − w([k])) ≤ B(W − w([`+ 1])) <
`+1∑
i=1

|wi|vi ≤
k∑
i=1

|wi|vi ≤ vk
∑
i≤k

wi = vkw([k]).

However, this contradicts the fact that B/w(k) ≥ vk/(W − w([k])).

Proposition 7. Let {x∗i } and ` be as defined in Lemma 6, and k as defined in FairInnerProduct.

Then, w([k + 1]) >
∑`+1

i=k+1 |wi|x∗i .

Proof. If ` = k, the statement is trivially true. Consider thus the case ` > k. Assume that∑k+1
i=1 wi ≤

∑`+1
i=k+1 |wi|x∗i . Then,

B(W − w([k + 1]))

w([k + 1])
≥
B(W −

∑`+1
i=k+1 |wi|x∗i )∑`+1

i=k+1 |wi|x∗i
≥
B(W −

∑`+1
i=1 |wi|x∗i )∑`+1

i=k+1 |wi|x∗i

≥
∑`+1

i=k+1 |wi|vix∗i∑`+1
i=k+1 |wi|x∗i

≥ vk+1

since vk+1 ≤ vi for all (k + 1) ≤ i ≤ `. However, this contradicts the fact that B/w([k + 1]) <
vk+1/(W − w([k + 1])).

Now we will show that S(x; w) ≥ 1
5OPT using Proposition 7. First notice that since (21) is

a relaxation of (7), OPT ≤ S(x∗; w), where {x∗i } are defined in Lemma 6. Therefore, we have

that OPT ≤ S(x∗; w) =
∑

i≤k |wi|+
∑`+1

i=k+1 |wi|x∗i
Prop. 7
< w([k]) + w([k + 1]) ≤ 2w([k]) + |wi∗ |

It follows that if O = [k], it implies w([k]) ≥ |wi∗ | and therefore w([k]) = S(x; w) ≥ 1
3OPT .

On the other hand, if O = {i∗}, then |wi∗ | >
∑

j∈[k+1]\{i∗} |wj |, which implies 2wi∗ > w([k]).
Therefore, OPT ≤ 2w([k]) + |wi∗ | < 5|wi∗ | = 5S(x; w).
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D.3 The Uniform-Weight Case

In the uniform-weight case, FairInnerProduct reduces to the Ghosh-Roth mechanism. Our
benchmark OPT is stricter than that used by Ghosh and Roth. In particular, they show their
mechanism is optimal among all truthful, individually rational, budget-feasible and envy-free
mechanisms. In this section, we prove that when all weights are equal, FairInnerProduct is
2-approximate with respect to OPT .

Let |wi| = u for all i ∈ [n]. First, observe that in this case, FairInnerProduct always outputs
O = [k]. Therefore, S(x; w) = ku. We use this observation to prove the result.

Lemma 7. Assume that for all i ∈ [n], |wi| = u. Then, S(x; w) ≥ 1
2OPT .

Proof. Observe that OPT ≤ S(x∗; w) =
∑`+1

i=1 |wi|x∗i = w([k])+
∑`+1

i=k+1 |wi|x∗i < w([k])+w([k+
1]) from Proposition 7, where {x∗i } and ` are defined in Lemma 6. Substituting |wi| = u for all
i, we get OPT < (2k + 1)u. Since OPT is the objective value attained by the optimal DCLEF
mechanism, OPT = mu for some m ∈ [n]. This implies 2k+ 1 > m. Since k and m are integers,
it follows that 2k ≥ m, or equivalently, S(x; w) ≥ 1

2OPT .

E Proof of Theorem 4 (Impossibility of Approximation)

Consider the following example. Let n = 4. The private costs of the four individuals are given
by v1 = a, v2 = v3 = v4 = 2, where 0 < a < 2. The weights of the four individuals are given by
w1 = w2 = w3 = w = d, where d > 0. Let the budget B = 1 + a/2 < 2.

Observe that the optimal individually rational, budget-feasible, DCLEF mechanism would
set x∗1 = 1 and exactly one of x∗2, x

∗
3 and x∗4 to 1. Without loss of generality, assume that

x∗1 = x∗2 = 1 and x∗3 = x∗4 = 0. Therefore, the optimal weight OPT = 2d. Consider a truthful,
individually rational, budget-feasible, DCLEF mechanism that is 2 − ε approximate, for any
ε > 0. Such a mechanism must set at least two of the xi’s to 1 (since it is 2− ε approximate).
Therefore, for such a mechanism σ(x) ≤ 2d. Moreover, since the mechanism is budget-feasible,
it must set xi = 1, as otherwise the sum of payments, 1

σ(x)

∑
i viwixi ≥

4d
σ(x) ≥ 2 > B. For

such a mechanism, the cost of individual 1 is c1(ε1) = v1w1/σ(x) ≥ v1d/(2d) ≥ v1/2. Since
the mechanism is truthful, the payment p1 cannot depend on v1. Also, for this mechanism to
be individually rational, p1 must be at least 1 (since v1 can be arbitrarily close to 2), which
implies that the remaining budget is strictly less than 1. However, for this mechanism, for
i ∈ {2, 3, 4}, ci(εi) = 2d/σ(x) ≥ 1. This means that this mechanism cannot be both individually
rational and budget feasible.
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