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// The PriView video consumption system protects 

user privacy while recommending relevant content. 

It distorts a user’s video ratings to prevent attackers 

from inferring user attributes, while maintaining the 

distorted ratings’ usefulness for recommendations. //

WITH THE ADVENT of targeted 
advertising and the popularity of 
data mining, users find their privacy 
threatened. To address this rising 
concern, researchers have proposed 
many privacy- preserving mecha-
nisms.1 Most of these mechanisms 
have strong theoretical guarantees 
but often lack practicality. For in-
stance, reaching a sufficient level 
of privacy often requires sanitizing 
(distorting) user data to the point 
where it is no longer usable.

PriView is an interactive system 

for video consumption that pro-
vides privacy transparency and con-
trol while maintaining the quality 
of video recommendations based 
on user ratings. It shows how 
 information- theoretic privacy can 
lead to practical policies for protect-
ing user profiles while maintaining 
the sanitized data’s utility.

The Privacy–Utility 
Framework
We assume a user has two kinds of 
data. Data vector A should remain 

private—for example, it could be a 
user’s political views, age, and gen-
der. However, the user wants to re-
lease data vector B to a service pro-
vider in exchange for some utility, 
such as the user’s ratings of a TV 
show to get content recommenda-
tions based on his or her preferences. 
Because these two kinds of data are 
correlated, releasing show ratings 
might lead to indirectly revealing 
a user’s private data through infer-
ence attacks. Surveys have shown 
that TV audiences can be distinctly 
characterized.2

We consider a local- privacy set-
ting in which the joint probability 
distribution pAB links A to B. (For 
more on local privacy and central-
ized privacy, see the sidebar.) So, an 
adversary who observes B could in-
fer some information about A. Such 
an adversary could be an untrusted 
service provider or a third party 
with whom service providers might 
exchange data.

To reduce this inference threat, 
PriView releases the sanitized data 
B̂, which it generates according to 
a conditional probabilistic mapping 
pB Bˆ |  called the privacy mapping. 
This mapping should make it more 
difficult to perform any statistical 
inference of A based on the observa-
tion of B̂, while preserving some util-
ity for B̂ by limiting the distortion.

We adopt Flavio du Pin Calmon 
and Nadia Fawaz’s privacy–utility 
framework.3 In it, the privacy map-
ping controls the privacy leakage, 
modeled as the mutual information 

( )�I A B;  between A and B̂, subject to 
a utility requirement modeled by a 
constraint on the average distortion

E d B B( , ˆ)B B, ˆ
⎡⎣ ⎤⎦. 

We focus on perfect privacy, 

( ) =I A B; ˆ 0: the mapping pB Bˆ |  renders 
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RELATED WORK IN LOCAL  
AND CENTRALIZED PRIVACY
Researchers have studied privacy–utility tradeoffs for 
both local and centralized privacy. In local privacy, users 
do not trust the entity aggregating the data. So, they hold 
their data locally and process it according to a privacy- 
preserving mechanism before releasing it to the aggre-
gator. Local privacy dates back to randomized response 
in surveys1 and has been considered in data mining and 
statistics.2–7 PriView (see the main article) falls in this 
category because it assumes that the service provider is 
untrusted and that users want to protect their private in-
formation from inference attacks.

Researchers have also considered local privacy in the 
context of differential privacy in terms of learning aggre-
gate statistical properties from several users’ data.7–9 In 
contrast, we devise content recommendations for individual 
 users while maintaining the privacy of users’ attributes.

In centralized privacy, a trusted entity aggregates data 
from users in a database while an untrusted analyst queries 
the database. The aggregator processes that data through 
a centralized privacy- preserving mechanism to produce a 
privatized answer to the query.

Researchers have used information- theoretic frame-
works to analyze asymptotic privacy–utility tradeoffs in 
centralized databases, as the number of data samples 
grows large.10,11 Much differential- privacy research has 
 assumed a centralized setting with a trusted database 
owner and has focused on making the output of an applica-
tion running on the database differentially private.8,9,12 In 
particular, Frank McSherry and Ilya Mironov considered a 
trusted recommender system that accessed ratings from 
privacy- conscious users.12 They addressed the challenge of 
training a differentially private recommendation algorithm 
on the basis of those original ratings.

In contrast, we assume that the system already owns 
a recommendation algorithm that uses ratings from users 
who aren’t privacy conscious. We address the privacy chal-
lenges faced by any privacy- conscious user who wants to 
use this untrusted system.
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B̂ statistically independent from A. Any inference algo-
rithm that tries to infer A from B̂ cannot outperform an 
uninformed random guess.

In the local- privacy setting, perfect privacy is equiv-
alent to statistical independence between A and B̂. In 
other words,

( ) ( ) ( )= ′ =p b a p b a p bˆ | ˆ | ˆ
B A B A Bˆ | ˆ | ˆ  

for all a, ′a , and b̂, which in turn is equivalent to B̂ being 
locally 0- differential private with respect to A.

The System Architecture
PriView has three components: a user client, a privacy 
server, and a recommendation server. The client is a Web 
interface written in HTML5 and JavaScript. It lets users 
interact with the privacy settings, lets them watch and 
rate TV shows, and displays recommendations based on 
the privacy settings and privatized ratings.

The servers are written in Flask, a Python- based 
 micro- Web framework. They serve client requests and 
store and fetch data from databases. The privacy server 
also privatizes ratings according to users’ privacy set-
tings and sends the privatized ratings to the recom-
mendation server and user client. The recommendation 
server generates recommendations based on the priva-
tized ratings and sends them to the user client.

Four data collections are stored in MongoDB data-
bases. One stores users’ privacy settings and interactions 

with the content, such as show ratings; another collection 
stores privacy- mapping data. Both are accessed by the 
privacy server. A third collection stores the content meta-
data displayed on the client’s Web interface; the fourth 
stores content profiles for recommendation purposes. 
These two are accessed by the recommendation server.

PriView can run as a local privacy agent on the user 
side (for example, as a plug- in), before the release of san-
itized ratings to the service provider. It does not require 
modifications on the service- provider side.

The Dataset
PriView uses the Politics and TV dataset, which gathered 
data on US viewers’ political views and TV preferences 
in the fall of 2012.4 The dataset contains entries for 
1,218 users, 744 of whom identified as Democrats and 
474 of whom identified as Republicans. For each user, 
the dataset entry is a vector [age, gender, state, politics, 
B1, …, B50], where Bi ∈ {0, 1, …, 5} is the user’s 5-star 
rating for TV show i. The actual ratings range from 1 to 
5, where 5 is the highest rating; 0 means the user didn’t 
rate the show. The ratings were for 50 TV shows in six 
categories: sitcoms, reality shows, TV series, talk shows, 
news, and sports.

Functionalities
Here we examine in detail PriView’s three main 
functionalities.

Privacy settings
Privacy control TV guide History Recommendations

(a) (b) (c)

Top 6 recommendations based on

Actual ratings Distorted ratings

NCIS NCIS

The Mentalist Two and a Half Men

Two and a Half Men The Mentalist

Grey’s Anatomy

Grey’s AnatomyThe Voice

Only in America with
Larry the Cable Guy

Law and Order: SVU Major League 
Baseball

Gender Age Political
affiliation

Proceed to TV guide

Privacy monitor

10 40 48

2 0 0

Threat based on actual ratings

Threat based on perturbed ratings

37
Gender

31
Age

18
Politics

Privacy risk How do you like this show?

Save ratings

FIGURE 1. PriView overview. (a) The PriView privacy dashboard (“perturbed” means distorted). (b) The PriView show page. (c) An 

example of top six recommendations (shown as a table here with TV show names instead of images, owing to licensing and copyright 

issues).
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Transparency
The privacy dashboard (see Figure 1a) shows users’ pri-
vacy settings and the privacy monitor. Users do not need 
to reveal their age, gender, or political views; they need 
to reveal only whether they consider any of these features 
sensitive information they want to keep private. The pri-
vacy monitor shows the inference threat for each private 
attribute from users’ actual TV show ratings and from 
the sanitized ratings. So, users can compare the risks if 
they don’t activate privacy protection with the risks after 
the privacy mapping sanitizes the ratings.

To model the inference threat for each private attri-
bute from a particular rating vector representing a user’s 
history of ratings, we employ a privacy risk metric on a 
scale of 0 to 100. For private attribute A and the specific 
vector of ratings B = b, the privacy risk is

( )
( )= ∗ −

=⎛

⎝⎜
⎞

⎠⎟

+

Risk A b
H A B b

H A
( , ) 100 1

|
.
 

(1)

( ) ( ) ( )= −ΣH A p a p aloga A A  denotes the entropy of A dis-
tributed according to ( )p aA  and represents the inherent 
uncertainty of A. Similarly,

( ) ( ) ( )= = −ΣH A B b p a b p a b| | log |a A B A B| |  
denotes the remaining entropy of A given the observation 
B = b and represents the remaining uncertainty of A.

Intuitively, Risk(A, b) measures the percentage by 
which the uncertainty of A decreases owing to the ob-
servation of B = b, relative to the original uncertainty 
before observing B. Risk(A, b) = 0 means that B = b pro-
vides no information about A; Risk(A, b) = 100 implies 
that no uncertainty is left about A from observing B = b. 
The privacy risk based on a user’s actual rating vector B 
= b is Risk(A, b), whereas the privacy risk based on the 
sanitized ratings =B bˆ ˆ  is ( )Risk A b, ˆ , which we obtain by 
replacing B = b in Equation 1 with =B bˆ ˆ.

After selecting privacy settings, users can move to the 
TV guide (not shown here) and choose a show to watch. 
As Figure 1b illustrates, users can rate shows on each 
show page. Before users rate a show, a privacy risk tool 
reminds them of the privacy risk based on their history of 
actual ratings. When users hover above the rating stars 
for a new show, for each possible rating of one to five 
stars, the privacy risk tool dynamically updates its num-
bers to inform users of how the privacy risk would evolve 
if they added a particular rating. This tool shows the risk 
based on actual ratings before sanitization. Once users 
choose and submit a rating, the privacy- preserving mech-
anism sanitizes the rating vector. The privacy dashboard 

lets users verify that the privacy risk after ratings distor-
tion is 0 for the attributes they selected as private.

Control
As we mentioned before, users can select which attri-
butes they want to remain private. The system imple-
ments a privacy- preserving mechanism for releasing user 
ratings to a service provider. This mechanism ensures 
perfect privacy against the statistical inference of private 
features3 while minimizing the released data’s distortion. 
Finally, a history log (not shown here) lets users see their 
true ratings and the sanitized ratings.

Challenges. While implementing the privacy–utility 
framework, we encountered the following technical 
challenges that required adapting it.

The first challenge was scalability. Designing the pri-
vacy mapping pB Bˆ |  requires characterizing the value of

( )p b bˆ |B Bˆ |

for all possible pairs 

( ) ∈ ×b b B B, ˆ ˆ

or solving the convex optimization problem over B B̂  
variables. When =B B̂ and the size of the alphabet 

=B 650 is large, solving the convex optimization over B 2 
variables might be intractable. Salman Salamatian and 
his colleagues proposed quantization to reduce the num-
ber of optimization variables from B 2

 to K2, where K 
denotes the number of quantization levels.4 The choice 
of K is a tradeoff between the optimization’s size and the 
additional distortion introduced by quantization.

Quantization assumes that B lies in a metric space. 
Directly applying quantization on the original rating vec-
tor B, where unrated shows have a 0 rating, would make 
our model perceive unrated shows as strongly disliked 
by the user, when they might actually be unknown.4 To 
circumvent this issue, we first transform B into the com-
pleted rating vector Bc using low- rank matrix factoriza-
tion (MF), a standard collaborative- filtering technique. 
We then feed Bc to the quantization module, which maps 
it to a cluster center C. For quantization, we use K- means 
clustering with K = 75 cluster centers, where our choice 
of K was guided empirically. C is then fed to the privacy 
optimization algorithm, which outputs B̂. The privacy- 
mapping algorithm (see Figure 2) follows the Markov 
chain → → → →A B B C B̂c .
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The second challenge was estimating the prior distri-
bution. Computing Risk(A, b) and finding the privacy 
mapping as the solution to the privacy convex optimiza-
tion discussed by Calmon and Fawaz3 rely on the funda-
mental assumption that pA,B is known and can be fed as 
input to the algorithm. In practice, the true distribution 
might not be known but could be estimated from a sam-
ple dataset. Such a dataset could come from a set of users 
who don’t have privacy concerns and publicly disclose 
both A and B. However, it might contain a small number 
of samples or be incomplete, which makes estimating the 
prior distribution challenging.

Salamatian and his colleagues studied in detail the 
case of a mismatched estimate of the prior distribution 
and its impact on the privacy–utility tradeoff.5 Using the 
completion and quantization step, we adapted Calmon 
and Fawaz’s framework to use the prior distribution be-
tween the private data and quantized completed data in 
the algorithm in Figure 2. We estimate the distribution 
using kernel density estimation, with a Gaussian kernel 
of width σ = 9.5.

Evaluation. In Figure 2, ϵ bounds the amount of informa-
tion about A leaked by B̂ and thus represents the level of 
the user’s privacy requirements. Varying ϵ lets us study 
the tradeoff between privacy requirements and distor-
tion. K- means quantization introduces a distortion of 
1.08 per rating and yields mutual information I(A; C) 
= 0.2. With 0.14 additional distortion, the privacy map-
ping achieves perfect privacy, ( ) =I A B; ˆ 0, for an end- to- 
end distortion of 1.22. 

PriView focuses on perfect privacy and thus on ϵ close 
to 0. As we mentioned before, at perfect privacy, any in-
ference algorithm that tries to infer A from B̂ can per-
form only as well as an uninformed random guess. In-
tuitively, B̂ is statistically independent from A; thus, the 
privacy mapping statistically “erases” any information 
about A from B̂. An inference algorithm that tries to in-
fer A from B̂ can perform only as well as an uninformed 
inference algorithm that would try to infer A without 
knowledge of B̂.

Figure 3 shows a receiver- operating- characteristic 
(ROC) curve illustrating the performance of a logistic- 
regression classifier that tried to infer a user’s political 
views from

• the original rating vector (the blue curve),
• a binarized version of the vector in which ratings of 

≥4 were mapped to 1 (the viewer liked the show) and 

ratings of ≤3 were mapped to 0 (the viewer disliked 
the show),

• vectors with an average distortion of ≤1 (the pink 
curve), and

• vectors with an average distortion of ≤2 (the red 
curve).

An ROC curve plots the true- positive rate against 
the false- positive rate of a binary classifier at various 
thresholds.

We used 10- fold cross validation to plot the false- 
positive rate (Democrats falsely classified as Republi-
cans) against the true- positive rate (Republicans cor-
rectly classified). The blue curve illustrates the privacy 
risk of inferring a user’s political views from the original 
rating vectors. The green curve is close to the blue curve 
and shows that merely binarizing the ratings will not 
ensure privacy. The red curve is close to the red diago-
nal line, which represents an uninformed random guess. 
This proves that with a distortion of ≤2, the privacy- 
preserving mechanism ensures perfect privacy against 
logistic regression of political views from the sanitized 
ratings. Additional inference attacks with other com-
mon classifiers, including naive Bayes and support vec-
tor machines, produced similar results.

Personalized Recommendations
PriView recommends video content on the basis of the 
users’ released ratings. A natural question is whether 
the recommendations’ relevance can be preserved when 
they’re based on sanitized ratings. PriView’s recommen-
dations page lets users compare the top six TV show 
recommendations based on their actual ratings and on 

Input: prior pA,C

Solve: convex optimization

           minimize E d C B, ˆC B, ˆ ( )⎡
⎣⎢

⎤
⎦⎥

             pB Cˆ |
           subject to I A B; ˆ( ) ≤∈
                           p SimplexB Cˆ | ∈

Remap: p pB B B C Bˆ | ˆ | ( )←

Output: mapping pB Bˆ |

FIGURE 2. The privacy- mapping algorithm, which follows the 

Markov chain A B B C B̂c→ → → → .
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their sanitized ratings (see Figure 1c). PriView’s recom-
mendation engine uses low- rank MF to predict missing 
show ratings from ratings provided by the user for other 
shows.6 We trained the MF recommender engine by al-
ternating regularized least squares.6 Figure 1c shows an 
overlap of four of the six recommendations without and 
with privacy, illustrating that PriView maintained utility 
while protecting user privacy.

We conducted further testing to illustrate that Pri-
View can eliminate the privacy threat from B̂ for A with 
little effect on recommendation quality. We used five- 
fold cross validation to split our dataset into a training 
set containing 80 percent of the data and a test set con-
taining the remaining 20 percent. Using that data, we 
tested the MF recommender engine with and without 
privacy to compare the relevance of recommendations in 
these two cases. In each test set, we randomly removed 
and tried to predict 10 percent of the ratings and calcu-
lated the corresponding RMSE.

The RMSE for prediction based on the actual ratings 
ranged from 1.24 to 1.34. When political views were 

protected, the RMSE based on the 
sanitized ratings ranged from 1.34 
to 1.42. When gender was protected, 
the RMSE based on the sanitized 
ratings ranged from 1.34 to 1.43. 
So, the RMSE for rating prediction 
did not degrade much with privacy 
protection.

Those results were for the case of 
perfect privacy. If the privacy require-
ments were less stringent, such as

I A B; ˆ( ) ≤∈ 

for some ϵ > 0, the RMSE for predic-
tion with privacy protection would 
be even closer to the RMSE without 
privacy. Using a more advanced and 
optimized recommendation engine 
instead of the standard MF recom-
mendation engine would yield better 
rating predictions both without and 
with privacy protection.

P riView can interface with on-
line video services and with 
TV and video- on-  demand 

services. It could also be extended 
to other media content, such as music, books, and news, 
and to other products, services, or locations that are 
rated online by users. PriView can be extended to loca-
tions outside the US, provided data for them is available.

In addition, PriView could be adapted to protect pri-
vacy in the context of social networks. Users could be 
informed of the privacy risks of actions such as liking a 
page or comment or adding friends before taking those 
actions, and could control those risks. In such a context, 
data distortion could amount to simply avoiding some 
actions or preventing the release of some data.

Further extensions also include broadening the set 
of private attributes that users deem sensitive and ana-
lyzing the temporal dynamics of privacy and utility in 
a real- time setting with a system such as PriView. We’re 
looking at extending PriView to cases in which adversar-
ies can access side information, such as additional infor-
mation about users, before users submit ratings. Future 
research will include studying how sanitized rating data 
affects the recommendation engine’s quality if the engine 
was trained on sanitized data.
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FIGURE 3. A receiver- operating- characteristic (ROC) curve illustrating the 

performance of a logistic- regression classifier that tried to infer a user’s political views 

from various versions of online movie ratings. With a distortion of ≤2, our privacy- 

preserving mechanism ensured perfect privacy.
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