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Abstract—A multihop relaying system is analyzed where data
sent by a multi-antenna source is relayed by successive multi-an-
tenna relays until it reaches a multi-antenna destination. Assuming
correlated fading at each hop, each relay receives a faded version of
the signal from the previous level, performs linear precoding and
retransmits it to the next level. Using free probability theory and
assuming that the noise power at relays— but not at destination—
is negligible, the closed-form expression of the asymptotic instan-
taneous end-to-end mutual information is derived as the number
of antennas at all levels grows large. The so-obtained deterministic
expression is independent from the channel realizations while de-
pending only on channel statistics. This expression is also shown
to be equal to the asymptotic average end-to-end mutual informa-
tion. The singular vectors of the optimal precoding matrices, max-
imizing the average mutual information with finite number of an-
tennas at all levels, are also obtained. It turns out that these vectors
are aligned to the eigenvectors of the channel correlation matrices.
Thus, they can be determined using only the channel statistics. As
the structure of the singular vectors of the optimal precoders is in-
dependent from the system size, it is also optimal in the asymptotic
regime.

Index Terms—Asymptotic capacity, correlated channel, free
probability theory, multihop relay network, precoding.

I. INTRODUCTION

R ELAY communication systems have recently attracted
much attention due to their potential to substantially im-

prove the signal reception quality when the direct communica-
tion link between the source and the destination is not reliable.
Due to its major practical importance as well as its significant
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technical challenge, deriving the capacity—or bounds on the ca-
pacity—of various relay communication schemes is growing to
an entire field of research. Of interest is the derivation of ca-
pacity bounds for systems in which the source, the destination,
and the relays are equipped with multiple antennas.

Several works have focused on the capacity of two-hop relay
networks, such as [1]–[7]. Assuming fixed channel conditions,
lower and upper bounds on the capacity of the two-hop mul-
tiple-input multiple output (MIMO) relay channel were derived
in [1]. In the same paper, bounds on the ergodic capacity
were also obtained when the communication links undergo
i.i.d. Rayleigh fading. The capacity of a MIMO two-hop relay
system was studied in [2] in the asymptotic case where the
number of relay nodes grows large while the number of transmit
and receive antennas remain constant. The scaling behavior of
the capacity in two-hop amplify-and-forward (AF) networks
was analyzed in [3]–[5] when the numbers of single-antenna
sources, relays and destinations grow large. The achievable
rates of a two-hop code-division multiple-access (CDMA)
decode-and-forward (DF) relay system were derived in [8]
when the numbers of transmit antennas and relays grow large.
In [6], an ad hoc network with several source-destination
pairs communicating through multiple AF-relays was studied
and an upperbound on the asymptotic capacity in the low
Signal-to-Noise Ratio (SNR) regime was obtained in the case
where the numbers of source, relay and destination nodes
grow large. The scaling behavior of the capacity of a two-hop
MIMO relay channel was also studied in [7] for bi-directional
transmissions. In [9] the optimal relay precoding matrix was
derived for a two-hop relay system with perfect knowledge of
the source-relay and relay-destination channel matrices at the
relay.

Following the work in [10] on the asymptotic eigenvalue
distribution of concatenated fading channels, several analyses
were proposed for more general multihop relay networks,
including [11]–[15]. In particular, considering multihop MIMO
AF networks, the tradeoffs between rate, diversity, and network
size were analyzed in [11], and the diversity-multiplexing
tradeoff was derived in [12]. The asymptotic capacity of mul-
tihop MIMO AF relay systems was obtained in [13] when
all channel links experience i.i.d. Rayleigh fading while the
number of transmit and receive antennas, as well as the number
of relays at each hop grow large with the same rate. Finally
hierarchical multihop MIMO networks were studied in [15]
and the scaling laws of capacity were derived when the network
density increases.

0018-9448/$26.00 © 2011 IEEE
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In this paper, we study an -hop MIMO relay communica-
tion system wherein data transmission from source antennas
to destination antennas is made possible through relay
levels, each of which are equipped with
antennas. In this transmission chain with levels it is as-
sumed that the direct communication link is only viable between
two adjacent levels, due to large distances between nonadja-
cent levels for instance: each relay receives a faded version of
the multidimensional signal transmitted from the previous level
and, after linear precoding, retransmits it to the next level.

We consider the case where all communication links undergo
Rayleigh flat fading and the fading channels at each hop (be-
tween two adjacent levels) may be correlated while the fading
channels of any two different hops are independent. We as-
sume that the channel at each hop is block-fading and that the
channel coherence-time is long enough—with respect to code-
word length—for the system to be in the nonergodic regime.
As a consequence, the channel is a realization of a random ma-
trix that is fixed during a coherence block. Therefore, the in-
stantaneous end-to-end mutual information between the source
and the destination can be viewed as an instance of a random
variable.

Using tools from the free probability theory and assuming
that the noise power at the relay levels, but not at the destination,
is negligible, we derive a closed-form expression of the asymp-
totic instantaneous end-to-end mutual information between the
source input and the destination output as the number of an-
tennas at all levels grows large. This asymptotic expression is
shown to be independent from the channel realizations and to
only depend on the channel statistics. Therefore, as long as the
statistical properties of the channel matrices at all hops do not
change, the instantaneous mutual information asymptotically
converges to the same deterministic expression for any arbitrary
channel realization. This property has two major consequences.
First, the mutual information in the asymptotic regime is not a
random variable any more but a deterministic value representing
an achievable rate. This means that when the channel is random
but fixed during the transmission and the system size is large
enough, the capacity in the sense of Shannon is not zero, on the
contrary to the capacity of small size systems [16, Section 5.1].
Second, given the stationarity of channel statistical properties,
the asymptotic instantaneous mutual information obtained in the
nonergodic regime also serves as the asymptotic value of the av-
erage end-to-end mutual information between the source and the
destination. Note that the latter is the same as the asymptotic er-
godic end-to-end mutual information that would be obtained if
the channel was an ergodic process.

We also obtain the singular vectors of the optimal precoding
matrices that maximize the average mutual information of the
system with a finite number of antennas at all levels. It is proven
that the singular vectors of the optimal precoding matrices are
also independent from the channel realizations and can be de-
termined using only statistical knowledge of channel matrices
at source and relays. We show that the so-obtained singular
vectors are also optimal in the asymptotic regime of our con-
cern. Finally, we apply the aforementioned results on the asymp-
totic mutual information and the structure of the optimal pre-

coding matrices to several communications scenarios with dif-
ferent number of hops, and types of channel correlation.

The rest of the paper is organized as follows. Notations and
the system model are presented in Section II. The end-to-end in-
stantaneous mutual information in the asymptotic regime is de-
rived in Section III, while the singular vectors of the optimal pre-
coding matrices are obtained in Section IV. Theorems derived
in Sections III and IV are applied to several MIMO communi-
cation scenarios in Section V. Numerical results are provided in
Section VI and concluding remarks are drawn in Section VII.

II. SYSTEM MODEL

Notation: is the set of non-negative integers. Let
, the set of integers greater or equal to and less

or equal to is denoted .
denotes the logarithm in base 2 while is the logarithm

in base . is the unit-step function defined by
.

is the complete elliptic integral of the first kind [17]. Matrices
and vectors are represented by boldface upper and lower cases,
respectively. , , stand for the transpose, the conju-
gate and the transpose conjugate of , respectively. The trace
and the determinant of are respectively denoted by
and . represent the eigenvalues of
an matrix . The operator norm of is defined by

, while the Fröbenius norm of
is . The th entry of matrix is
written . is the identity matrix of size . is the sta-
tistical expectation operator, the entropy of a variable ,
and the mutual information between variables and

. is the empirical eigenvalue distribution of an
square matrix with real eigenvalues, while and are
respectively its asymptotic eigenvalue distribution and its eigen-
value probability density function when its size grows large.
We denote the matrix product by .
Note that the matrix product is not commutative; therefore, the
order of the index in the product is important and in particular

.

A. Multihop MIMO Relay Network

Consider Fig. 1 that shows a multihop relaying system with
source antennas, destination antennas and relaying

levels. The th relaying level is equipped with antennas. We
assume that the noise power is negligible at all relays while at
the destination the noise power is such that

(1)

where is the circularly-symmetric zero-mean i.i.d. Gaussian
noise vector at the destination. In effect, the simplifying noise-
free relays assumption is made to have a white aggregate noise
at the destination and, consequently, more tractable derivations.
Note that several other authors have implicitly used a similar
noise-free relay assumption by assuming that the noise at the
destination of a MIMO multihop relay network is white. For
instance, in [12] a multihop AF relay network is analyzed and it
is proved that the resulting colored noise at the destination can
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Fig. 1. Multilevel relaying system.

be well-approximated by white noise in the high SNR regime. In
terms of practical relevance, the mutual information expression
derived in the case of noise-free relays can be seen as an upper-
bound for the case of noisy relays. When applied to a particular
communication scenario, if the expressions obtained for perfect
noise-free relays show that no gains in terms of rate result from
relaying, then a more complex analysis with noisy relays will
be irrelevant.

Throughout the paper, we assume that the correlated channel
matrix at hop can be represented by the Kro-
necker model

(2)

where are respectively the transmit and receive cor-
relation matrices, are zero-mean i.i.d. Gaussian matrices in-
dependent over index , with variance of the th entry

(3)

where represents the pathloss attenuation with and
denoting the pathloss exponent and the length of the th hop,

respectively. We also assume that channels matrices
remain constant during a coherence block of length

and vary independently from one channel coherence block to
the next.

Note that no assumption is made on the structure of the
channel correlation matrices. The particular case of i.i.d.
Rayleigh fading channel can be obtained from the above Kro-
necker model when matrices and are set to identity.
It should also be mentioned that by adapting the correlation
matrices structure, the Kronecker model can be used to model
relay-clustering. Given a total number of antennas at level
, instead of considering that the relaying level consists of a

single relay equipped with many antennas ( ), we can consider
that a relaying level contains relays equipped with ( )
antennas. Clustering has a direct impact on the structure of
correlation matrices: when the antennas at level are dis-
tributed among several relays, correlation matrices become
block-diagonal matrices, whose blocks represent the correlation
between antennas at a relay, while antennas at different relays
sufficiently separated in space are supposed uncorrelated. In
the limit of a relaying level containing relays equipped with
a single antenna, we fall back to the case of uncorrelated fading
with correlation matrices equal to identity.

Within one channel coherence block, the signal transmitted
by the source antennas at time is given
by the vector , where is the source
precoding matrix and is a zero-mean random vector with

(4)

which implies that

(5)

Assuming that relays work in full-duplex mode, at time
the relay at level uses a precoding matrix to

linearly precode its received signal
and form its transmitted signal

(6)

The precoding matrices at source and relays are
subject to the per-node long-term average power constraints

(7)

The fact that , along with the variance
of elements and with the power constraint

on , render the system of
our concern equivalent to a system whose random channel
elements would be i.i.d. with variance and whose power
constraint on transmitted signal would be finite and
equal to . Having finite transmit power at each level, this
equivalent system shows that adding antennas, i.e., increasing
the system dimension, does not imply increasing the transmit
power. Nonetheless, in order to use random matrix theory tools
to derive the asymptotic instantaneous mutual information in
Section III, the variance of random channel elements is required
to be normalized by the size of the channel matrix. That is
why the normalized model—channel variance (3) and power
constraint (7)—was adopted.

It should also be noticed that choosing diagonal precoding
matrices would reduce the above scheme to the simpler AF re-
laying strategy. Note that the proposed linear precoding relaying
technique is adapted for high SNR regimes, but not for low
SNR regimes. In the low SNR regime, known to be noise-lim-
ited, linear precoding performs poorly because power is wasted
on forwarding noise, and other relaying strategies such as de-
code-and-forward are more appropriate [18], [19]. On the con-
trary in the high SNR regime, linear precoding techniques such
as amplify-and-forward perform well [11], [20]. Finally, from a
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practical point of view, limited channel knowledge and simple
linear precoding techniques at relays are particularly relevant
for systems where relays have limited processing capabilities.

As can be observed from Fig. 1, the signal received at the
destination at time is given by

(8)

where the end-to-end equivalent channel is

(9)

Let us introduce the matrices

(10)

Then (9) can be rewritten as

(11)

For the sake of clarity, the dimensions of the matrices/vectors
involved in our analysis are given below

In the sequel, we assume that the channel coherence time is
large enough to consider the nonergodic case and consequently,
time index can be dropped. Finally, we define three channel-
knowledge assumptions:

• Assumption , local statistical knowledge at source:
the source has only statistical channel state information
(CSI) of its forward channel , i.e., the source knows the
transmit correlation matrix .

• Assumption , local statistical knowledge at relay: at the
relaying level, , only statistical CSI of the

backward channel and forward channel are avail-
able, i.e., relay knows the receive correlation matrix
and the transmit correlation matrix .

• Assumption , end-to-end perfect knowledge at destina-
tion: the destination perfectly knows the end-to-end equiv-
alent channel .

Throughout the paper, assumption is always made. Assump-
tion is the single assumption on channel-knowledge neces-
sary to derive the asymptotic mutual information in Section III,
while the two extra assumptions and are also necessary
in Section IV to obtain the singular vectors of the optimal pre-
coding matrices.

B. Mutual Information

Consider the channel realization in one channel co-
herence block. Under Assumption , the instantaneous
end-to-end mutual information between channel input and
channel output in this channel coherence block is
[16]

(12)

The entropy of the noise vector is known to be
. Besides, is zero-mean with variance

, thus given , the received signal
is zero-mean with variance . By [16,
Lemma 2], we have the inequality

, and the entropy is maximized
when the latter inequality holds with equality. This occurs
if is circularly-symmetric complex Gaussian, which is
the case when is circularly-symmetric complex Gaussian.
Therefore, throughout the rest of the paper we consider to
be a zero-mean circularly-symmetric complex Gaussian vector.
As such, the instantaneous mutual information (12) can be
rewritten as

(13)

Under Assumption , the average end-to-end mutual infor-
mation between channel input and channel output
is

(14)

To optimize the system, we are left with finding the precoders
that maximize the end-to-end mutual information (14) subject
to power constraints (7). In other words, we need to find the
maximum average end-to-end mutual information

(15)

In Section IV, the problem of finding the singular vectors of the
optimal precoders that maximize the average mutual informa-
tion (15) is addressed under channel knowledge Assumptions

, , and . Note that the nonergodic regime is consid-
ered; therefore, (14) represents only an average mutual infor-
mation over channel realizations, and the solution to (15) does
not necessarily represent the channel capacity in the Shannon
sense—the supremum of achievable rates with arbitrary small
probability of error—when the system size is small.
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III. ASYMPTOTIC MUTUAL INFORMATION

In this section, we consider the instantaneous mutual informa-
tion per source antenna between the source and the destination

(16)

and derive its asymptotic value as the number of antennas
grow large. The following theorem holds.

Theorem 1: For the system described in Section II, assume
that:

• channel knowledge assumption holds;
• while for all ;
• for all , as , has a limit eigenvalue

distribution with a compact support.
Then the instantaneous mutual information per source antenna

converges almost surely to

(17)
where by convention, are the solu-
tions of the system of equations

(18)

and the expectation in (17) and (18) is over whose
distribution is given by the asymptotic eigenvalue distribution

of .
The detailed proof of Theorem 1 is presented in Appendix B.
We would like to stress that (17) holds for any arbitrary set

of precoding matrices , if has a
compactly supported asymptotic eigenvalue distribution when
the system dimensions grow large. We would like to point out
that the power constraints on signals transmitted by the source
or relays are not sufficient to guarantee the boundedness of the
eigenvalues of . In fact, it is proved in Appendix C that
these power constraints can be written as

(19)

In the asymptotic regime,
and

. Therefore, the power constraints impose upper-bounds
(19) on the product of the first-order moments of the eigen-
values of matrices and in the asymptotic
regime. Unfortunately, these upper-bounds do not prevent the
eigenvalue distribution of from having an unbounded
support, and thus, the power constraints are a priori not suf-
ficient to guarantee the compactness of the support of the
asymptotic eigenvalue distribution of matrices . The
assumption that matrices have a compactly supported

asymptotic eigenvalue distribution is a priori not an intrinsic
property of the system model, but it was necessary to make that
assumption in order to use Lemma 2 to prove Theorem 1.

Given a set of precoding matrices, it can be observed from
(17) and (18) that the asymptotic expression is a deterministic
value that depends only on channel statistics and not on a par-
ticular channel realization. In other words, for a given set of
precoding matrices, as long as the statistical properties of the
channel matrices do not change, the instantaneous mutual infor-
mation always converges to the same deterministic achievable
rate, regardless of the channel realization. From this observa-
tion, three results follow:

• Result 1: As the numbers of antennas at all levels grow
large, the instantaneous mutual information is not a random
variable anymore and the precoding matrices maximizing
the asymptotic instantaneous mutual information can be
found based only on knowledge of the channel statistics,
without requiring any information regarding the instanta-
neous channel realizations.

• Result 2: When the channel is random but fixed during the
transmission and the system size grows large enough, the
Shannon capacity is not zero any more, on the contrary to
the capacity of small-size nonergodic systems [16, Section
5.1].

• Result 3: The asymptotic instantaneous mutual informa-
tion (17) obtained in the nonergodic regime also represents
the asymptotic value of the average mutual information,
whose expression is the same as the asymptotic ergodic
end-to-end mutual information that would be obtained if
the channel was an ergodic process.

It should also be mentioned that, according to the experi-
mental results illustrated in Section VI, the system under con-
sideration behaves like in the asymptotic regime even when it
is equipped with a reasonable finite number of antennas at each
level. Therefore, (17) can also be efficiently used to evaluate the
instantaneous mutual information of a finite-size system.

IV. OPTIMAL TRANSMISSION STRATEGY AT

SOURCE AND RELAYS

In previous section, the asymptotic instantaneous mutual
information (17), (18) was derived considering arbitrary
precoding matrices . In this sec-
tion, we analyze the optimal linear precoding strategies

at source and relays that allow to
maximize the average mutual information. We characterize the
optimal transmit directions determined by the singular vectors
of the precoding matrices at source and relays, for a system with
finite . It turns out that those transmit direction
are also the ones that maximize the asymptotic average mutual
information. Moreover, from Result 3 in Section III, it can
be inferred that the singular vectors of the precoding matrices
maximizing the asymptotic average mutual information are also
optimal for the asymptotic instantaneous mutual information
(17).

In future work, using the results on the optimal directions of
transmission (singular vectors of ) and the asymptotic mutual
information (17)–(18), we intend to derive the optimal power
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allocation (singular values of ) that maximize the asymptotic
instantaneous/average mutual information (17) using only sta-
tistical knowledge of the channel at transmitting nodes.

The main result of this section is given by the following
theorem:

Theorem 2: Consider the system described in Section II.
For let and

be the eigenvalue decompositions of the correla-
tion matrices and , where and are unitary
and and are diagonal, with their respective eigenvalues
ordered in decreasing order. Then, under channel-knowledge
assumptions , and , the optimal linear precoding
matrices that maximize the average mutual information under
power constraints (7) can be written as

(20)

where are diagonal matrices with non-negative real diag-
onal elements. Moreover, the singular vectors of the precoding
matrices (20) are also the ones that maximize the asymptotic
average mutual information. Since the asymptotic average mu-
tual information has the same value as the asymptotic instanta-
neous mutual information, the singular vectors of the precoding
matrices (20) are also optimal for the asymptotic instantaneous
mutual information.

For the proof of Theorem 2, the reader is referred to
Appendix C.

Theorem 2 indicates that to maximize the average mutual
information:

• the source should align the eigenvectors of the transmit
covariance matrix to the eigenvectors of the
transmit correlation matrix of the first-hop channel

. This alignment requires only local statistical channel
knowledge . Note that similar results were previously
obtained for both single-user [21] and multi-user [22]
single-hop (without relays) MIMO system with covari-
ance knowledge at the source.

• relay should align the right singular vectors of its pre-
coding matrix to the eigenvectors of the receive corre-
lation matrix , and the left singular vectors of to
the eigenvectors of the transmit correlation matrix .
These alignments require only local statistical knowledge

.
As power is non-negative, aligning the singular vectors of the
precoders to the eigenvectors of channel correlation matrices al-
lows to avoid wasting power on non-eigen directions. Moreover,
it follows from Theorem 2 that the optimization of can be
divided into two decoupled problems: optimizing the transmit
directions—singular vectors—on one hand, and optimizing the
transmit powers—singular values—on the other hand.

We would like to draw the reader’s attention to the fact that
the proof of this theorem does not rely on the expression of the
asymptotic mutual information given in (17). In fact, Theorem 2
is first proved in the nonasymptotic regime for an arbitrary set of

. As such, regardless of the system size, the singular
vectors of the precoding matrices should always be aligned to
the eigenvectors of the channel correlation matrices to maxi-
mize the average mutual information. In particular, the singular
vectors of the precoding matrices that maximize the asymptotic
average mutual information are also aligned to the eigenvectors
of channel correlation matrices as in (20). Furthermore, from
Result 3 in Section III, we can conclude that the singular vec-
tors given in (20) are also those that maximize the asymptotic
instantaneous mutual information.

Finally, we would like to point out that a result similar to The-
orem 2 was proved in [9] for a two-hop system with a single
noisy relay, uncorrelated channels and , and full channel
knowledge at source, relay and destination: the left and right
singular vectors of the optimal relay precoder were shown to be
aligned to the eigenvectors of matrices and , re-
spectively. This result encourages us to believe that in the case
of noisy relays, Theorem 2 may still hold for correlated chan-
nels, and statistical channel knowledge at source and relays.

V. APPLICATION TO MIMO COMMUNICATION SCENARIOS

In this section, Theorem 1 and Theorem 2 are applied to
four different communication scenarios. In the first two sce-
narios, the special case of nonrelay assisted MIMO ( )
without path-loss ( ) is considered, and we show how
(17) boils down to known results for the MIMO channel with
or without correlation. In the third and fourth scenarios, a mul-
tihop MIMO system is considered and the asymptotic mutual in-
formation is developed in the uncorrelated and exponential cor-
relation cases, respectively. The application of Theorem 1 and
Theorem 2 to these scenarios will also serve as a base for simu-
lations in Section VI, which validate the asymptotic expression
in Theorem 1, and show the impact of relaying on the commu-
nication rate in presence or absence of correlation.

A. Single-Hop MIMO With Statistical CSI at Source

Consider a simple single-hop uncorrelated MIMO system
with the same number of antennas at source and destination
i.e., .

Assuming an i.i.d. Rayleigh fading channel i.e.,
and equal power allocation at source antennas, the

source precoder is . Under these assumptions, the
asymptotic mutual information (17) can easily be shown to be

(21)
It can be observed that the deterministic expression (21) de-
pends only on the system characteristics and is independent
from the channel realizations. Moreover, equal power alloca-
tion is known to be the capacity-achieving power allocation for a
MIMO i.i.d. Rayleigh channel with statistical CSI at source [23,
Section 3.3.2], [16]. As such, the asymptotic mutual informa-
tion (21) also represents the asymptotic capacity of the system.
We should also mention that (21) is similar to the expression
of the asymptotic capacity per dimension previously derived in
[23, Section 3.3.2] for the MIMO Rayleigh channel with equal
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number of transmit and receive antennas and statistical CSI at
the transmitter.

In the more general case of correlated MIMO channel with
separable correlation we have . Let us de-
note the eigenvalue decomposition of ,
where is a diagonal matrix whose diagonal entries are the
eigenvalues of in the nonincreasing order and the unitary
matrix contains the corresponding eigenvectors. Defining
the transmit covariance matrix , it has
been shown [21] that the capacity-achieving matrix is given
by

(22)

where is a diagonal matrix containing the capacity-
achieving power allocation. Under these assumptions, the
asymptotic mutual information (17) becomes equivalent to the
expression1 obtained in [23, Theorem 3.7] for the capacity of
the correlated MIMO channel with statistical CSI at transmitter.

B. Uncorrelated Multihop MIMO With Statistical CSI at
Source and Relays

In this example, we consider an uncorrelated multihop MIMO
system, i.e., all correlation matrices are equal to identity. Then
by Theorem 2 the optimal precoding matrices should be diag-
onal. Assuming equal power allocation at source and relays, the
precoding matrices are of the form , where is real
positive and chosen to respect the power constraints.

Using the power constraint expression (19) in Appendix C, it
can be shown by induction on that the coefficients in the
uncorrelated case are given by

(23)

Then the asymptotic mutual information for the uncorrelated
multihop MIMO system with equal power allocation is given by

(24)

where are the solutions of the system of
multivariate polynomial equations

(25)

Note that the asymptotic mutual information is a deterministic
value depending only on a few system characteristics: signal
power , noise power , pathloss , number of hops and
ratio of the number of antennas .

1The small differences between the expression derived from (17) and the ca-
pacity expression in [23, Theorem 3.7] are due to different normalization as-
sumptions in [23]. In particular (17) is the mutual information per source an-
tenna while the expression in [23] is the capacity per receive antenna.

C. Exponentially Correlated Multihop MIMO With Statistical
CSI at Source and Relays

In this example, the asymptotic mutual information (17) is
developed in the case of exponential correlation matrices and
precoding matrices with singular vectors as in Theorem 2. Ex-
ponential correlation matrices are a common model of correla-
tion in uniform linear antenna array (ULA) [24]–[26].

Exponential Correlation Model: We assume that Level is
equipped with a uniform linear array (ULA) of length , char-
acterized by its antenna spacing and its characteristic
distances and proportional to transmit and receive spa-
tial coherences, respectively. Then the receive and transmit cor-
relation matrices at Level can respectively be modeled by the
following Hermitian Wiener-class2 Toeplitz matrices [24]–[26]

. . .
. . .

...
. . .

. . .
. . .

...
. . .

. . .

and

. . .
. . .

...
. . .

. . .
. . .

...
. . .

. . .

(26)

where the antenna correlation at receive (resp. transmit) side

(resp. ) is
an exponential function of antenna spacing and characteristic
distance (resp. ) at relaying Level .

Equal Power Allocation Over Optimal Precoding Directions:
We further assume equal power allocation over the optimal di-
rections, i.e., the singular values of are chosen to be all equal:

, where is real positive and chosen to respect
the power constraint (7). Equal power allocation may not be the
optimal power allocation scheme, but it is considered in this ex-
ample for simplicity.

Using the power constraint expression for general cor-
relation models (19) and considering precoding matrices

with singular vectors as in Theorem
2 and equal singular values , we can show by induction on

2A sequence of ��� Toeplitz Matrices� � �� � is said to be in the
Wiener class [27, Section 4.4] if the sequence �� � of first-column and first-row
elements is absolutely summable, i.e., ��� �� � � ��.If
�� � � �, then ��� 	 � � � 
 �

� ��, and consequently � is in the Wiener class.�

is obviously also in the Wiener class if �� � � �.
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that the coefficients respecting the power constraints for any
correlation model are given by

(27)

We would like to point out that (27) is a general expression that
holds not only for the exponential correlation model, but also for
any correlation model as long as the singular vectors of the pre-
coding matrices are chosen as in Theorem 2. Applying the ex-
ponential correlation model to (27) and making the dimensions
of the system grow large, it can be shown that in the asymptotic
regime, the respecting the power constraint for the exponen-
tially correlated system converge to the same value (23) as for
the uncorrelated system.

Asymptotic Mutual Information: Under the assumptions of
exponential channel correlation matrices, precoders with sin-
gular vectors as in Theorem 2, and equal power allocation over
these precoding directions, we show in Appendix D that the
asymptotic mutual information is given by (28) [see (28) and
(29) at the bottom of the page], where are the
solutions of the system of (29), and for all

(30)

(with the convention ). Those expressions
show that only a few relevant parameters affect the performance
of this complex system: signal power , noise power ,
pathloss , number of hops , ratio of the number of antennas

, and correlation ratios and .

VI. NUMERICAL RESULTS

In this section, we present numerical results to validate The-
orem 1 and to show that even with small , for all , the
behavior of the system is close to its behavior in the asymptotic
regime, making Theorem 1 a useful tool for optimization of fi-
nite-size systems as well as large networks.

A. Uncorrelated Multihop MIMO

The uncorrelated system described in Section V-B is first
considered.

Fig. 2(a) plots the asymptotic mutual information from The-
orem 1 as well as the instantaneous mutual information ob-
tained for an arbitrary channel realization (shown as experi-
mental curves in the figure) in the case of one, two or three
hops. Experimental curves are drawn for systems with 10 an-
tennas at source, destination and each relay, or 100 antennas at
each level. When increasing the number of hops , the distance
between source and destination is kept constant and
relays are inserted between source and destination with equal
spacing between each relaying level. In both exam-
ples, whose main purpose is not to optimize the system, but to
validate the asymptotic formula in Theorem 1, matrices are
taken proportional to the identity matrix to simulate equal power
allocation. The channel correlation matrices are also equal to
the identity matrix to mimic the uncorrelated channel. More-
over, the pathloss exponent is considered. We would like
to point out that the experimental curves for different channel
realizations produced similar results. As such, the experimental
curve corresponding to a single channel realization is shown for
the sake of clarity and conciseness.

Fig. 2(a) shows the perfect match between the instantaneous
mutual information for an arbitrary channel realization with
100 antennas at each level and the asymptotic mutual informa-
tion, validating Theorem 1 for large network dimensions. On
the other hand, with 10 antennas at each level, it appears that
the instantaneous mutual information of a system with a small
number of antennas behaves very closely to the asymptotic
regime, justifying the usefulness of the asymptotic formula
even when evaluating the end-to-end mutual information of a
system with small size.

Finally, Fig. 2(b) plots the asymptotic mutual information for
one, two, and three hops, as well as the value of the instanta-
neous mutual information for random channel realizations when
the number of antennas at all levels increases. The concentra-
tion of the instantaneous mutual information values around the
asymptotic limit when the system size increases shows the con-
vergence of the instantaneous mutual information towards the
asymptotic limit as the number of antennas grows large at all
levels with the same rate.

B. One-Sided Exponentially Correlated Multihop MIMO

Based on the model discussed in Section V-C, the one-sided
exponentially correlated system is considered in this section. In

(28)

(29)
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Fig. 2. Uncorrelated case: asymptotic mutual information and instantaneous mutual information for single-hop MIMO, 2 hops, and 3 hops. (a) Mutual information
versus SNR with � � ��� ���,� antennas. (b) Mutual information versus � , at ��� � �� dB.

the case of one-sided correlation, e.g., and
for all , the asymptotic mutual information (28),
(29) is reduced to

(31)

where are the solutions of the system of
equations

(32)

One-sided correlation was considered to avoid the involved
computation of the elliptic integral in the system of
(29), and therefore, to simplify simulations.

Fig. 3(a) plots the asymptotic mutual information for one, two
or three hops, as well as the instantaneous mutual information
obtained for an arbitrary channel realization (shown as exper-
imental curves in the figure) for 10 and 100 antennas at each
level. As in the uncorrelated case, the perfect match of the ex-
perimental and asymptotic curves in Fig. 3(a) with 100 antennas
validates the asymptotic formula in Theorem 1 in the presence of
correlation. Fig. 3(a) also shows that even for a small number of
antennas, the system behaves closely to the asymptotic regime
in the correlated case.

Finally, Fig. 3(b) plots the instantaneous mutual information
for random channel realizations against the size of the system
and shows its convergence towards the asymptotic mutual in-
formation when the number of antennas increases. We would

like to mention that simulations for higher values of the correla-
tion showed that convergence towards the asymptotic limit
is slower when correlation increases.

VII. CONCLUSION AND RESEARCH PERSPECTIVES

We studied a multihop MIMO relay network in the correlated
fading environment, where relays at each level perform linear
precoding on their received signal prior to retransmitting it to the
next level. Using free probability theory, a closed-form expres-
sion of the instantaneous end-to-end mutual information was de-
rived in the asymptotic regime where the number of antennas at
all levels grows large. The asymptotic instantaneous end-to-end
mutual information turns out to be a deterministic quantity that
depends only on channel statistics and not on particular channel
realizations. Moreover, it also serves as the asymptotic value of
the average end-to-end mutual information. Simulation results
verified that, even with a small number of antennas at each level,
multihop systems behave closely to the asymptotic regime. This
observation makes the derived asymptotic mutual information
a powerful tool to optimize the instantaneous mutual informa-
tion of finite-size systems with only statistical knowledge of the
channel.

We also showed that for any system size the left and right sin-
gular vectors of the optimal precoding matrices that maximize
the average mutual information are aligned, at each level, with
the eigenvectors of the transmit and receive correlation matrices
of the forward and backward channels, respectively. Thus, the
singular vectors of the optimal precoding matrices can be de-
termined with only local statistical channel knowledge at each
level.

In the sequel, the analysis of the end-to-end mutual infor-
mation in the asymptotic regime will first be extended to the
case where noise impairs signal reception at each relaying level.
Then, combining the expression of the asymptotic mutual infor-
mation with the singular vectors of the optimal precoding ma-
trices, future work will focus on optimizing the power allocation
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Fig. 3. One-sided exponential correlation case: asymptotic mutual information and instantaneous mutual information for � � ���, and single-hop MIMO, 2 hops,
and 3 hops. (a) Mutual information versus SNR with � � ��� ���,� antennas. (b) Mutual information versus � , at ��� � �� dB.

determined by the singular values of the precoding matrices. Fi-
nally future research directions also include the analysis of the
relay-clustering effect, and the optimal size of clusters in corre-
lated fading is expected to depend on the SNR regime.

APPENDIX A
TRANSFORMS AND LEMMAS

Transforms and lemmas used in the proofs of Theorems 1 and
2 are provided and proved in this appendix, while the proofs of
Theorems 1 and 2 are detailed in Appendices B and C, respec-
tively.

A) Transforms: Let be a square matrix of size with
real eigenvalues . The empirical eigenvalue
distribution of is defined by

(33)

We define the following transformations [10]

(34)

(35)

(36)

where .
B) Lemmas: We present here the lemmas used in the

proofs of Theorems 1 and 2. Lemmas 1, 3, 5, and 7 are proved
in Appendix A-C, while Lemmas 2, 6, and 4 are taken from
[27], [28], and [29], respectively.

Lemma 1: Consider an matrix and a matrix ,
such that their product has non-negative real eigenvalues.
Denote . Then

(37)

Note that Lemma 1 is a more general form of the results de-
rived in [30, Eq. (1.2)], [10, Eq. (15)].

Lemma 2 ([28, Prop. 4.4.9 and 4.4.11]): For , let
be such that as . Let:

• be a complex Gaussian random matrix with
i.i.d. elements with variance .

• be an constant matrix such that
and has the limit

eigenvalue distribution .
• be a Hermitian random matrix, indepen-

dent from , with an empirical eigenvalue distribution
converging almost surely to a compactly supported proba-
bility measure .

Then, as :
• the empirical eigenvalue distribution of

converges almost surely to the compound free Poisson dis-
tribution [28];

• the family is
asymptotically free almost everywhere.

Thus, the limiting eigenvalue distribution of
is the free convolution

and its -transform is

(38)

Note that if the elements of had variance instead of ,
would still be asymp-

totically free almost everywhere, and consequently, (38) would
still hold.

Lemma 3: Consider an matrix with zero-mean
i.i.d. entries with variance . Assume that the dimensions go to
infinity while , then

(39)
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Lemma 4 ([29, Theorem H.1.h]): Let and be two pos-
itive semi-definite hermitian matrices of size . Let
and be their decreasingly-ordered eigenvalues, respec-
tively. Then the following inequality holds:

(40)

Lemma 5: For , let be a random
matrix. Assume that:

• are mutually independent,
• goes to infinity while ,
• as goes to infinity, the eigenvalue distribution of

converges almost surely in distribution to a compactly sup-
ported measure ,

• as go to infinity, the eigenvalue distribution
of converges almost surely in
distribution to a measure .

Then is compactly supported.

Lemma 6 ([27, Theorem 9]): Let be a sequence of
Wiener-class Toeplitz matrices, characterized by the function

with essential infimum and essential supremum .
Let be the eigenvalues of and be any
positive integer. Then

(41)

Furthermore, if is real, or equivalently, the matrices
are all Hermitian, then for any function continuous on

(42)

Lemma 7: For , given a set of deterministic ma-
trices and a set of independent random matrices

, with i.i.d. zero-mean gaussian elements with
variance

(43)

C) Proofs of Lemmas: The proofs of Lemmas 1, 3, 5, and
7 are given hereafter.

Proof of Lemma 1: Given two complex matrices of size
, and of size , their products and have

the same nonzero eigenvalues with the

same respective multiplicities . However, the mul-
tiplicities and of the 0-eigenvalues of and , re-
spectively, are related as follows:

(44)

Assuming that , and therefore, , has real eigenvalues,
we show hereafter that (37) holds.

The empirical eigenvalue distributions of and are
defined by

(45)

Using (44), we get

(46)

From (46), it is direct to show that

(47)

As , from (47), we obtain

(48)

Finally, using

and the definition of the -transform

yields the desired result

(49)

This concludes the proof of Lemma 1.

Proof of Lemma 3: Consider an matrix with
zero-mean i.i.d. entries with variance . Let de-
note the normalized version of with zero-mean i.i.d. entries
of variance and define and .
It is direct to show that . Using the latter result along
with [10, Theorem 1], we obtain

(50)

Applying Lemma 1 to yields

(51)

This completes the proof of Lemma 3.
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Proof of Lemma 5: The proof of Lemma 5 is done by in-
duction on . For , Lemma 5 obviously holds. Assuming
that Lemma 5 holds for , we now show that it also holds for

.
We first recall that the eigenvalues of Gramian matrices

are non-negative. Thus, the support of is lower-bounded
by 0, and we are left with showing that it is also upper-bounded.

Denoting , we can write

(52)

For a matrix , let denote its largest eigenvalue. The
largest eigenvalue of is given by

(53)

To simplify notations, we rename the random variables as
follows:

(54)
Then (53) can be rewritten

(55)

Let , by (55) we have

(56)

which still holds for the asymptotic distributions as
, while . Denoting the plane

region , we can write

(57)

By assumption, the distributions of and
converge almost surely to compactly supported measures. Thus,
their largest eigenvalues are asymptotically upper-bounded and
the support of the asymptotic distributions of and are upper-
bounded, i.e.,

(58)

Let , then for all , we have

and , as the dimensions go to infinity with constant
rates. Therefore, in the asymptotic regime, we have

(59)

Combining (56) and (59), we get for .
Thus, there exists a constant such that
and , which means that the support of
the asymptotic distribution of is upper-bounded. As a conse-
quence, the support of the asymptotic eigenvalue distribution of

is also upper-bounded. Therefore, the support of
is upper-bounded, which concludes the proof.

Proof of Lemma 7: The proof of Lemma 7 is done by in-
duction. We first prove that Lemma 7 holds for . To that
purpose, we define the matrix . Then

(60)

The expectation of the diagonal element of is

(61)

where the second equality is due to the fact that
. It follows from (60) and (61) that

(62)

which shows that Lemma 7 holds for .
Now, assuming that Lemma 7 holds for , we

show it also holds for . We define the matrix
. Then

(63)
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The expectation of the diagonal element of is

(64)

where the second equality is due to the independence of and
and to the fact that . Thus, (63)

becomes

(65)

which shows that if Lemma 7 holds for , then it holds for .
Therefore, Lemma 7 holds for any , which concludes

the proof.

APPENDIX B
PROOF OF THEOREM 1

In this appendix, we first list the main steps of the proof of
Theorem 1 and then present the detailed proof of each step. Note
that the proof of Theorem 1 uses tools from the free probability
theory introduced in Appendix A. The proof of Theorem 1 con-
sists of the following four steps.

1) Obtain .
2) Use to find .
3) Use to obtain .
4) Integrate to obtain itself.
• First Step: obtain

Theorem 3: As , , go to infinity with the same
rate, the -transform of is given by

(66)

Proof: The proof is done by induction using Lemmas 1, 3,
2. First, we prove (66) for . Note that

(67)

therefore

(68)

Now, we need to prove that if (66) holds for , it also holds
for . Note that

(69)

Therefore

(70)

by Lemma 1. The empirical eigenvalue distribution of Wishart
matrices converges almost surely to the Marčenko-Pastur
law whose support is compact. Moreover, by assumption, the
empirical eigenvalue distribution of ,
converges to an asymptotic distribution with a compact support.
Thus, by Lemma 5, the asymptotic eigenvalue distribution of

has a compact support. Therefore, Lemma 2
can be applied to (70) to show that
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(71)

The proof is complete.

• Second Step: use to find

Theorem 4: Let us define . We have

(72)

Proof: From (66) it follows that

(73)

Using (36) in (73), we obtain

(74)
or equivalently

(75)

Substituting in (75), (72) follows. This com-
pletes the proof.

• Third Step: use to obtain

Theorem 5: In the asymptotic regime, as go
to infinity while , the derivative of the
instantaneous mutual information is given by

(76)

where are the solutions to the following set of
equations

(77)

The expectation in (77) is over whose probability distribution
function is given by (convention: ).

Proof: First, we note that

(78)

where is the (nonasymptotic) empirical eigenvalue

distribution of , that converges almost-surely to the
asymptotic empirical eigenvalue distribution , whose
support is compact. Indeed, the empirical eigenvalue distri-
bution of Wishart matrices converges almost surely
to the Marčenko-Pastur law whose support is compact, and
by assumption, for the empirical eigenvalue dis-
tribution of converges to an asymptotic distribution
with a compact support. Therefore, according to Lemma 5, the
asymptotic eigenvalue distribution of has a compact
support. The function is continuous, thus bounded on the
compact support of the asymptotic eigenvalue distribution of

. This enables the application of the bounded conver-
gence theorem to obtain the almost-sure convergence in (78).

It follows from (78) that

(79)
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Let us denote

(80)

(81)

and, for the sake of simplicity, let . From (79), we
have

(82)

Substituting in (72) and using (80) and (81), it follows
that

(83)

Finally, from (81) and the very definition of in (35), we obtain

(84)

Substituting (82) in (83) and (84) yields

(85)

and

(86)
Letting

(87)

it follows from (85) that

(88)

Using (87) and (88) in (86), we obtain

(89)
or, equivalently

(90)

This, along with (88), complete the proof.

• Fourth Step: integrate to obtain itself
The last step of the proof of Theorem 1 is accomplished by

computing the derivative of in (17) with respect to and
showing that the derivative matches (76). This shows that (17)
is one primitive function of . Since primitive functions of

differ by a constant, the constant was chosen such that
the mutual information (17) is zero when SNR goes to zero:

.
We now proceed with computing the derivative of . If (17)

holds, then we have (recall )

(91)

From (91), we have

(92)

where and the third line is due to (18). Equation (76)
immediately follows from (92). This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

In this appendix, we provide the proof of Theorem 2. The
proof of this theorem is based on [29, Theorem H.1.h] that is
reiterated in Lemma 4. Note that, [29, Theorem H.1.h] has been
used before to characterize the source precoder maximizing the
average mutual information of single-user [21] and multi-user
[22] single-hop MIMO systems with covariance knowledge at
source, and to obtain the relay precoder maximizing the instan-
taneous mutual information of a two-hop MIMO system with
full CSI at the relay [9]. We extend the results of [9], [21], [22]
to suit the MIMO multihop relaying system of our concern.

The proof consists of three following steps.
• Step 1: Use the singular value decomposition (SVD)

and show that uni-
tary matrices and impact the maximization of the
average mutual information through the power constraints
only, while diagonal matrices affect both the mutual
information expression and the power constraints.
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• Step 2: Represent the power constraint expression as a
function of and channel correlation matrices
only.

• Step 3: Show that the directions minimizing the trace in the
power constraint are those given in Theorem 2, regardless
of the singular values contained in .

Before detailing each step, we recall that the maximum average
mutual information is given by

(93)
and we define the conventions , and . Note
that the latter implies that and .

• Step 1: clarify how the average mutual information
depends on the transmit directions and the transmit
powers

For we define

(94)

Since is zero-mean i.i.d. complex Gaussian, thus bi-unitarily
invariant, and and are unitary matrices, has the
same distribution as .

For , we consider the following SVD

(95)

where , are unitary matrices, is a real diagonal matrix
with non-negative diagonal elements in the nonincreasing order
of amplitude.

We now rewrite the average mutual information as a function
of matrices , and , in order to take the maximization
in (15) over , and instead of . Using (94) and (95)
the average mutual information can be expressed in terms of
matrices , , and as

(96)

being zero-mean i.i.d. complex Gaussian, multiplying it by
unitary matrices does not change its distribution. Therefore,

has the same distribution as and the
average mutual information can be rewritten

(97)

Therefore, the maximum average mutual information can then
be represented as

(98)

Expression (97) shows that the average mutual information
does not depend on the matrices and , which determine
the transmit directions at source and relays, but only depends
on the singular values contained in matrices . Nevertheless,
as shown by (98), the maximum average mutual information

depends on the matrices —and thus on the transmit
directions—through the power constraints.

• Step 2: give the expression of the power constraints
in function of and channel correlation
matrices

We show hereunder that the average power of transmitted
signal at th relaying level is given by

(99)
Proof: The average power of transmitted signal can be

written as

with

(100)

Applying Lemma 7 to yields

(101)

which concludes the proof.

Using (99) in the power constraints (7), those constraints can
be rewritten as a product of trace-factors as in (19). In order to
express (19) in function of matrices , and , we first
rewrite (95) as

(102)
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and use (102) in (19) to obtain

(103)

and

(104)

where is a real diagonal matrix with non-neg-
ative diagonal elements in nonincreasing order. This leads to
the following expression of the power constraints in function of

(105)

It was shown in Step 1 that matrices do not have an impact
on the expression of the average mutual information (97), and
surprisingly (105) now shows that matrices do not have an
impact on the power constraints either. In fact, as can be ob-
served from (105), the power constraints depend only on ma-
trices and . It should also be noticed that matrix has
an impact on the power constraint of the th relay only.

• Step 3: give the optimal transmit directions
To determine the optimal directions of transmission at

source, we apply Lemma 4 to the source power constraint (105)
, and conclude that for all choices

of diagonal elements of , the matrix that minimizes the
trace is . Therefore, the source
precoder becomes

(106)

This recalls the known result (22) in the single-hop MIMO case,
where the optimal precoding covariance matrix at source was
shown [21], [22] to be

(107)

Similarly, to determine the optimal direction of transmission
at th relaying level, we apply Lemma 4 to the th power con-
straint: for all choices of diagonal elements of , the matrix

that minimizes the trace is .
This leads to the precoding matrix at level

(108)

Now since matrices have an impact
neither on the expression of the average mutual information nor

on the power constraints, they can be chosen to be equal to iden-
tity: . This leads to the (nonunique
but simple) optimal precoding matrices

(109)

with the diagonal matrices containing
the singular values of .

This completes the proof of Theorem 2.

APPENDIX D
PROOF OF THE ASYMPTOTIC MUTUAL INFORMATION

WITH EXPONENTIAL CORRELATIONS

In this appendix, we provide the proof of the asymptotic mu-
tual information (28), obtained under the assumptions of expo-
nential channel correlations, precoding matrices with singular
vectors as in Theorem 2, and optimal power allocation over
these directions.

A) Optimal Precoding Directions: For , the eigen-
value decompositions of channel correlation matrices and

can be written as

(110)

where and are unitary, and and are diagonal
with their respective eigenvalues ordered in decreasing order.
Following Theorem 2, we consider precoding matrices of the
form , i.e., the singular vectors of are
optimally aligned to the eigenvectors of channel correlation ma-
trices. Consequently, we can rewrite matrices (10) as

(111)

Thus, the eigenvalues of matrices are contained in the
following diagonal matrices

(112)

The asymptotic mutual information, given by (17) and (18),
involves expectations of functions of whose distribution is
given by the asymptotic eigenvalue distribution of

. Equation (112) shows that a function can be
written as a function , where the variables

, , and are characterized by the asymptotic eigen-
value distributions , , and of ma-
trices , and , respectively. Therefore, expec-
tations in (17) and (18) can be computed using the asymptotic
joint distribution of instead of the distribu-
tion . To simplify notations, we rename the variables
as follows:

(113)
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(120)

(121)

Then, the expectation of a function can be written

(114)

B) Exponential Correlation Model: So far, general corre-
lation matrices were considered. We now introduce the expo-
nential correlation model (26) and further develop (114) for the
distributions and resulting from that particular
correlation model.

As grows large, the sequence of Toeplitz matrices
of size , defined in (26), is fully characterized by the
continuous real function , defined for by [27,
Section 4.1]

(115)

We also denote the essential infimum and supremum of by
and , respectively [27, Section 4.1]. In a similar way,

we can define the continuous real function characterizing
the sequence of Toeplitz matrices by replacing in
(115) by , and we denote by and its es-
sential infimum and supremum, respectively.

By the Szegö Theorem [27, Theorem 9], recalled in Lemma
6, for any real function (resp. ) continuous on

(resp. ), we have

(116)

Assuming that variables and are in-
dependent, and applying the Szegö Theorem to (114), we can
write

(117)

C) Equal Power Allocation Over Optimal Precoding Di-
rections: We now evaluate (117) in the case of equal power al-
location over the optimal directions given in (27). From (27) it
can be seen that is independent from and ,
thus . Consequently

(118)

and (117) becomes

(119)

D) Asymptotic Mutual Information: Using (119) in (17)
with gives the expres-
sion of the asymptotic mutual information (120) [see (120) and
(121) at the top of the page], where are the so-
lutions of the system of (121), obtained by using (119)
in (18) with (with the convention

). Applying the changes of variables

(122)
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and performing some algebraic manipulations that are skipped
for the sake of conciseness, (120) and (121) can be rewritten as
in (28). This concludes the proof.
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