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Abstract—We describe a noncooperative interference alignment
(IA) technique which allows an opportunistic multiple input mul-
tiple output (MIMO) link (secondary) to harmlessly coexist with
another MIMO link (primary) in the same frequency band. As-
suming perfect channel knowledge at the primary receiver and
transmitter, capacity is achieved by transmiting along the spatial
directions (SD) associated with the singular values of its channel
matrix using a water-filling power allocation (PA) scheme. Often,
power limitations lead the primary transmitter to leave some of
its SD unused. Here, it is shown that the opportunistic link can
transmit its own data if it is possible to align the interference pro-
duced on the primary link with such unused SDs. We provide both
a processing scheme to perform IA and a PA scheme which maxi-
mizes the transmission rate of the opportunistic link. The asymp-
totes of the achievable transmission rates of the opportunistic link
are obtained in the regime of large numbers of antennas. Using
this result, it is demonstrated that depending on the signal-to-noise
ratio and the number of transmit and receive antennas of the pri-
mary and opportunistic links, both systems can achieve transmis-
sion rates of the same order.

Index Terms—Channel eigenmodes, cognitive radio, MIMO in-
terference channel, opportunistic interference alignment, water-
filling.

I. INTRODUCTION

T HE concept of cognitive radio is well known by now.
The main idea is to let a class of radio devices, called

secondary systems, opportunistically access certain portions
of spectrum left unused by other radio devices, called primary
systems, at a given time or geographical area [2]. These pieces
of unused spectrum, known as white-spaces, appear mainly
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when either transmissions in the primary network are sporadic,
i.e., there are periods over which no transmission takes place,
or there is no network infrastructure for the primary system in
a given area, for instance, when there is no primary network
coverage in a certain region. In the case of dense networks, a
white-space might be a rare and short-lasting event. In fact,
the idea of cognitive radio as presented in [2] (i.e., spectrum
pooling), depends on the existence of such white-spaces [3].
In the absence of those spectrum holes, secondary systems are
unable to transmit without producing additional interference
on the primary systems. One solution to this situation has been
provided recently under the name of interference alignment
(IA). Basically, IA refers to the construction of signals such that
the resulting interference signal lies in a subspace orthogonal
to the one spanned by the signal of interest at each receiver.
The IA concept was independently introduced by several
author [4]–[7]. Recently, IA has become an important tool to
study the interference channel, namely its degrees of freedom
[6], [8], [9]. The feasibility and implementation issues of IA
regarding mainly the required channel state information (CSI)
has been also extensively studied [10]–[13].

In this paper we study an IA scheme named opportunistic
IA (OIA) [1]. The idea behind OIA can be briefly described as
follows. The primary link is modeled by a single-user MIMO
channel since it must operate free of any additional interference
produced by secondary systems. Then, assuming perfect CSI at
both transmitter and receiver ends, capacity is achieved by im-
plementing a water-filling power allocation (PA) scheme [14]
over the spatial directions associated with the singular values
of its channel transfer matrix. Interestingly, even if the primary
transmitters maximize their transmission rates, power limita-
tions generally lead them to leave some of their spatial direc-
tions (SD) unused. The unused SD can therefore be reused by
another system operating in the same frequency band. Indeed,
an opportunistic transmitter can send its own data to its respec-
tive receiver by processing its signal in such a way that the in-
terference produced on the primary link impairs only the un-
used SDs. Hence, these spatial resources can be very useful
for a secondary system when the available spectral resources
are fully exploited over a certain period in a geographical area.
The idea of OIA, as described above, was first introduced in [1]
considering a very restrictive scenario, e.g., both primary and
secondary devices have the same number of antennas and same
power budget. In this paper, we consider a more general frame-
work where devices have different number of antennas, different
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power budgets and no conditions are impossed over the channel
transfer matrices (In [1], full rank condition was impossed over
certain matrices).

The rest of this paper is structured as follows. First, the system
model, which consists of an interference channel with MIMO
links, is introduced in Section II. Then, our aim in Section III is
twofold. First, an analysis of the feasibility of the OIA scheme
is provided. For this purpose, the existence of transmit oppor-
tunities (SD left unused by the primary system) is studied. The
average number of transmit opportunities is expressed as a func-
tion of the number of antennas at both the primary and sec-
ondary terminals. Second, the proposed interference alignment
technique and power allocation (PA) policy at the secondary
transmitter are described. In Section IV-B, tools from random
matrix theory for large systems are used to analyze the achiev-
able transmission rate of the opportunistic transmitter when no
optimization is performed over its input covariance matrix. We
illustrate our theoretical results by simulations in Section V.
Therein, it is shown that our approach allows the secondary link
to achieve transmission rates of the same order as those of the
primary link. Finally, in Section VI we state our conclusions and
provide possible extensions of this work.

II. SYSTEM MODEL

Notations: In the sequel, matrices and vectors are respec-
tively denoted by boldface upper case symbols and boldface
lower case symbols. An matrix with ones on its main di-
agonal and zeros on its off-diagonal entries is denoted by ,
while the identity matrix of size is simply denoted by .
An matrix with zeros in all its entries (null matrix) is
denoted by . Matrices and are the transpose and
Hermitian transpose of matrix , respectively. The determinant
of matrix is denoted by . The expectation operator is de-
noted by . The indicator function associated with a given set

is denoted by , and defined by (respectively,
0) if (respectively, ). The Heaviside step function
and the Dirac delta function are respectively denoted by
and . The symbols , , and denote the sets of nonnega-
tive integers, real numbers, and complex numbers, respectively.
The subsets and are denoted by and ,
respectively. The operator with is equivalent to
the operation . Let be an square matrix with
real eigenvalues . We define the empirical eigen-

value distribution of by ,
and, when it exists, we denote the associated eigenvalue
probability density function, where and are respec-
tively the associated limiting eigenvalue distribution and prob-
ability density function when .

We consider two unidirectional links simultaneously oper-
ating in the same frequency band and producing mutual inter-
ference as shown in Fig. 1. The first transmitter-receiver pair

is the primary link. The pair is an op-
portunistic link subject to the strict constraint that the primary
link must transmit at a rate equivalent to its single-user capacity.
Denote by and , with (respectively, ), the
number of antennas at the primary (respectively, secondary) re-
ceiver and transmitter, respectively. Each transmitter sends in-

Fig. 1. Two-user MIMO interference channel.

dependent messages only to its respective receiver and no co-
operation between them is allowed, i.e., there is no message
exchange between transmitters. This scenario is known as the
MIMO interference channel (IC) [15], [16] with private mes-
sages. A private message is a message from a given source to a
given destination: only one destination node is able to decode it.
Indeed, we do not consider the case of common messages which
would be generated by a given source in order to be decoded by
several destination nodes.

In this paper, we assume the channel transfer matrices be-
tween different nodes to be fixed over the whole duration of
the transmission. The channel transfer matrix from transmitter

to receiver is an matrix de-
noted by which corresponds to the realization of a random
matrix with independent and identically distributed (i.i.d.) com-
plex Gaussian circularly symmetric entries with zero mean and
variance , which implies

(1)

The symbols transmitter is able to simultaneously
transmit, denoted by , are represented by the
vector . We assume that
symbols are i.i.d. zero-mean circularly-sym-
metric complex Gaussian variables. In our model, transmitter

processes its symbols using a matrix to construct its
transmitted signal . Therefore, the matrix is called
pre-processing matrix. Following a matrix notation, the pri-
mary and secondary received signals, represented by the
column-vectors , with , can be written as

(2)

where is an -dimensional vector representing noise ef-
fects at receiver with entries modeled by an additive white
Gaussian noise (AWGN) process with zero mean and variance

, i.e., , . At transmitter
, the power allocation matrix is defined by

the input covariance matrix . Note that sym-
bols , are mutually independent and
zero-mean, thus, the PA matrices can be written as diagonal ma-
trices, i.e., . Choosing therefore
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means selecting a given PA policy. The power constraints on the
transmitted signals can be written as

(3)

Here, we have assumed that the i.i.d. entries of matrices ,
for all , are Gaussian random variables with zero
mean and variance . This assumption together with the
power constraints in (3) is equivalent to considering a system
where the entries of matrices for all are
Gaussian random variables with zero mean and unit variance,
and the transmitted signal are constrained by a finite
transmit power . Nonetheless, the first assumption allows
us to increase the dimension of the system (number of antennas)
while maintaining the same average received signal-to-noise
ratio (SNR) level , . Moreover, most of
the tools from random matrix theory used in the asymptotic
analysis of the achievable data rate of the opportunistic link
in Section IV-B, require the variance of the entries of channel
matrices to be normalized by their size. That is the reason why
the normalized model, i.e., channel transfer matrices and power
constraints respectively satisfying (1) and (3), was adopted.

At receiver , the signal is processed using an
matrix to form the -dimensional vector

. All along this paper, we refer to as the post-processing
matrix at receiver . Regarding channel knowledge assumptions
at the different nodes, we assume that the primary terminals
(transmitter and receiver) have perfect knowledge of the ma-
trix while the secondary terminals have perfect knowledge
of all channel transfer matrices , . One
might ask whether this setup is highly demanding in terms of
information assumptions. In fact, there are several technical ar-
guments making this setup relatively realistic: a) in some con-
texts channel reciprocity can be exploited to acquire CSI at the
transmitters; b) feedback channels are often available in wire-
less communications [11]; and c) learning mechanisms [12] can
be exploited to iteratively learn the required CSI. In any case,
the perfect information assumptions provide us with an upper
bound on the achievable transmission rate for the secondary
link.

III. INTERFERENCE ALIGNMENT STRATEGY

In this section, we describe how both links introduced in
Section II can simultaneously operate under the constraint that
no additional interference is generated by the opportunistic
transmitter on the primary receiver. First, we revisit the trans-
mitting scheme implemented by the primary system [14], then
we present the concept of transmit opportunity, and finally we
introduce the proposed opportunistic IA technique.

A. Primary Link Performance

According to our initial assumptions (Section II) the primary
link must operate at its highest transmission rate in the absence
of interference. Hence, following the results in [14] and [17]
and using our own notation, the optimal pre-processing and
post-processing schemes for the primary link are given by the
following theorem.

Theorem 1: Let be a singular
value decomposition (SVD) of the channel

transfer matrix , with and , two unitary
matrices with dimension and , respec-
tively, and an matrix with main diagonal

and zeros on its off-diagonal.
The primary link achieves capacity by choosing ,

, , where

(4)

with
and the constant (water-level) is set to saturate the power con-
straint (3).

Let . When implementing its ca-
pacity-achieving transmission scheme, the primary trans-
mitter allocates its transmit power over an equivalent
channel which consists of at most

parallel sub-channels with nonzero
channel gains , respectively. These nonzero channel
gains to which we refer as transmit dimensions, correspond
to the nonzero eigenvalues of matrix . The transmit
dimension is said to be used by the primary
transmitter if . Interestingly, (4) shows that some of the
transmit dimensions can be left unused. Let
denote the number of transmit dimensions used by the primary
user:

(5)

As , the primary link transmits at least over di-
mension regardless

of its SNR, and moreover, there exist at most transmit dimen-
sions, thus

(6)

In the following subsection, we show how those unused di-
mensions of the primary system can be seen by the secondary
system as opportunities to transmit.

B. Transmit Opportunities

Once the PA matrix is set up following Theorem 1, the
primary equivalent channel is
an diagonal matrix whose main diagonal contains

nonzero entries and zero entries. This equivalent
channel transforms the set of used and unused
transmit dimensions into a set of receive dimensions
containing a noisy version of the primary signal, and a set of

unused receive dimensions containing no primary
signal. The used dimensions are called primary reserved
dimensions, while the remaining dimensions are
named secondary transmit opportunities (TO). The IA strategy,
described in Section III-C allows the secondary user to exploit
these receive dimensions left unused by the primary
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link, while avoiding to interfere with the receive dimensions
used by the primary link.

Definition 2 (Transmit Opportunities): Let
be the eigenvalues of matrix and be

the water-level in (Theorem 1). Let , as defined in (5), be the
number of primary reserved dimensions. Then the number of
transmit opportunities available to the opportunistic terminal
is given by

(7)

Note that in this definition it is implicitly assumed that the
number of TOs is constant over a duration equal to the channel
coherence time.

Combining (6) and (7) yields the bounds on the number of
transmit opportunities

(8)

A natural question arises as to whether the number of TOs
is sufficiently high for the secondary link to achieve a signif-
icant transmission rate. In order to provide an element of re-
sponse to this question, a method to find an approximation of
the number of TOs per primary transmit antenna, , is pro-
posed in Section IV-A. In any case, as we shall see in the next
subsection, to take advantage of the TOs described here, a spe-
cific signal processing scheme is required in the secondary link.

C. Pre-Processing Matrix

In this subsection, we define the interference alignment con-
dition to be met by the secondary transmitter and determine a
pre-processing matrix satisfying this condition.

Definition 3 (IA Condition): Let be
an SVD of and

(9)

be the covariance matrix of the co-channel interference (CCI)
plus noise signal in the primary link. The opportunistic link is
said to satisfy the IA condition if its opportunistic transmission
is such that the primary link achieves the transmission rate of the
equivalent single-user system, which translates mathematically
as

(10)
Our objective is first to find a pre-processing matrix that

satisfies the IA condition and then, to tune the PA matrix and
post-processing matrix in order to maximize the transmis-
sion rate for the secondary link.

Lemma 1 (Pre-Processing Matrix ): Let
be an ordered SVD of , with

and , two unitary matrices of size and ,
respectively, and an matrix with main diagonal

and zeros on its off-diagonal,

such that . Let also

the matrix have a block structure,

(11)

The IA condition (Def. 3) is satisfied independently of the
PA matrix , when the pre-processing matrix satisfies the
condition:

(12)

where is the dimension of the null space of matrix .
Proof: See Appendix A.

Another solution to the IA condition was given in [1],
namely for a given diagonal matrix

, with ,
where is the water-level of the primary system (Theorem
1) and . However, such a solution is more
restrictive than (12) since it requires to be invertible and
does not hold for the case when , .

Plugging from (12) into (9) shows that to guarantee the
IA condition (3), the opportunistic transmitter has to avoid inter-
fering with the dimensions used by the primary transmitter.
That is the reason why we refer to our technique as OIA: inter-
ference from the secondary user is made orthogonal to the
receive dimensions used by the primary link. This is achieved
by aligning the interference from the secondary user with the

nonused receive dimensions of the primary link.
From Lemma 1, it appears that the columns of matrix

have to belong to the null space of and therefore to
the space spanned by the last
columns of matrix , where is an SVD

of with and two unitary matrices of respective
sizes and , and an matrix
containing the vector on its main
diagonal and zeros on its off-diagonal, such that

, i.e.,

(13)

Here, for all , the column vector repre-

sents the column of matrix from the left to the right.
In the following, we assume that the columns of the matrix

form an orthonormal basis of the corresponding subspace
(13), and thus, . Moreover, recalling that is of
size , we would like to point out the following.

• When , and
with equality if and only if is full row-rank.

This means that there are always at least
nonnull orthogonal vectors in , and thus,

. Consequently, can always be chosen to
be different from the null matrix .
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• When, , and
, with equality if and only if is full column-rank. This

means that there are nonzero vectors in if and
only if is not full column-rank. Consequently, is a
nonzero matrix if and only if is not full column-rank,
and again .

Therefore, the rank of is given by
, and it represents the number of transmit dimensions on

which the secondary transmitter can allocate power without
affecting the performance of the primary user. The following
lower bound on holds:

(14)

Note that by processing with the resulting signal
becomes orthogonal to the space spanned by a subset of
rows of the cross-interference channel matrix .
This is the main difference between the proposed OIA technique
and the classical zero-forcing beamforming (ZFBF) [18], for
which the transmit signal must be orthogonal to the whole row
space of matrix . In the ZFBF case, the number of transmit
dimensions, on which the secondary transmitter can allocate
power without affecting the performance of the primary user,
is given by . Since

, we have . This inequality,
along with the observation that , shows that
any opportunity to use a secondary transmit dimension provided
by ZFBF is also provided by OIA, thus OIA outperforms ZFBF.
In the next subsection we tackle the problem of optimizing the
post-processing matrix to maximize the achievable trans-
mission rate for the opportunistic transmitter.

D. Post-Processing Matrix

Once the pre-processing matrix has been adapted to
perform IA according to (13), no harmful interference impairs
the primary link. However, the secondary receiver undergoes
the co-channel interference (CCI) from the primary transmitter.
Then, the joint effect of the CCI and noise signals can be seen
as a colored Gaussian noise with covariance matrix

(15)

We recall that the opportunistic receiver has full CSI of all
channel matrices, i.e., , . Given an input
covariance matrix , the mutual information between the input

and the output is

(16)

where equality is achieved by a whitening post-processing filter
[19]. i.e., the mutual information between the

transmitted signal and , is the same as that between and
. Note also that expression (16) is maximized by

a zero-mean circularly-symmetric complex Gaussian input
[14].

E. Power Allocation Matrix Optimization

In this subsection, we are interested in finding the input co-
variance matrix which maximizes the achievable transmis-
sion rate for the opportunistic link, assuming that
both matrices and have been set up as discussed in
Sections III-C and III-D, respectively. More specifically, the
problem of interest in this subsection is

(17)

Before solving the optimization problem (OP) in (17), we
briefly describe the uniform PA scheme (UPA). The UPA policy
can be very useful not only to relax some information assump-
tions and decrease computational complexity at the transmitter
but also because it corresponds to the limit of the optimal PA
policy in the high SNR regime.

1) Uniform Power Allocation: In this case, the opportunistic
transmitter does not perform any optimization on its own
transmit power. It rather uniformly spreads its total power
among the previously identified TOs. Thus, the PA matrix
is assumed to be of the form

(18)

where the constant is chosen to saturate the transmit power
constraint (3),

(19)

2) Optimal Power Allocation: Here, we tackle the OP formu-
lated in (17). For doing so, we assume that the columns of ma-
trix are unitary and mutually orthogonal. We define the ma-
trix , where is an matrix. Let

be an SVD of matrix , where the matrices
and are unitary matrices with dimensions and

respectively. The matrix is an matrix with
at most nonzero singular values on its main diag-
onal and zeros in its off-diagonal entries. The entries in the diag-
onal of the matrix are denoted by .
Finally, the original OP (17) can be rewritten as

(20)

Here, we define the square matrices of dimension ,

(21)
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and . Using
the new variables and , we can write that

(22)

where , with are the entries of the main
diagonal of matrix . Note that in (22) equality holds if
is a diagonal matrix [20]. Thus, choosing to be diagonal
maximizes the transmission rate. Hence, the OP simplifies to

(23)

The simplified optimization problem (23) has eventually a
water-filling solution of the form

(24)

where the water-level is determined to saturate the power
constraints in the optimization problem (23). Once the matrix

(21) has been obtained using water-filling (24), we define
the optimal PA matrix by

(25)

while the left and right hand factors, and , of matrix
in (21) are included in the pre-processing matrix:

(26)

In the next section, we study the achievable transmission rates
of the opportunistic link.

IV. ASYMPTOTIC PERFORMANCE OF THE SECONDARY LINK

In this section, the performance of the secondary link is an-
alyzed in the regime of large number of antennas, which is de-
fined as follows.

Definition 4 (Regime of Large Numbers of Antennas): The
regime of large numbers of antennas (RLNA) is defined as fol-
lows:

• , ;
• , ;
• , , and

is constant.

A. Asymptotic Number of Transmit Opportunities

In Section III, two relevant parameters regarding the perfor-
mance of the opportunistic system can be identified: the number

of TOs and the number of transmit dimensions to which the
secondary user can allocate power without affecting the perfor-
mance of the primary user . Indeed, is equivalent to the
number of independent symbols the opportunistic system is able
to simultaneously transmit. In the following, we analyze both
parameters and in the RLNA by studying the fractions

and (27)

(28)

Using (7), the fraction can be re-written as follows

(29)

where

(30)

As a preliminary step toward determining the expressions of
and , we first show how to find the asymptotic water-

level in the RLNA, and the expression of . First, recall
from the water-filling solution (4) and the power constraint (3)
that

(31)

Define the real function by

(32)

which is continuous and bounded on . (31) can be rewritten
as

(33)

where is the probability density function associ-

ated with the empirical eigenvalue distribution of

matrix . In the RLNA, the empirical eigenvalue
distribution converges almost surely to the determin-
istic limiting eigenvalue distribution , known as the
Marčenko–Pastur law [21] whose associated density is

(34)
where and . Note
that the Marčenko–Pastur law has a bounded real positive sup-
port and is continuous and bounded on .
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Consequently, in the RLNA, we have the almost sure conver-
gence of (33), i.e.,

Thus, in the RLNA (Def. 4), the water-level is the unique
solution [22] to the equation

(35)
and it does not depend on any specific realization of the channel
transfer matrix , but only on the maximum power
and the receiver noise power .

We can now derive . From (5), we have

(36)

Thus, given the asymptotic number of transmits dimensions
used by the primary link per primary transmit antenna ,
we obtain the asymptotic number of transmit opportunities per
primary transmit antenna by following (27), i.e.,

(37)

From (8), the following bounds on hold in the RLNA:

(38)

Finally, we give the expression of . Recall that
. The rank of

is given by its number of nonzero singular values, or equiva-
lently by the number of nonzero eigenvalues of matrix .
Let denote the eigenvalues of matrix

. We have

(39)

where is the probability density function associated

with the empirical eigenvalue distribution . is of size

, and the ratio converges in the RLNA to

(40)

Thus, in the RLNA, the empirical eigenvalue distribution
converges almost surely to the Marčenko–Pastur law

[21] with associated density

where and (41)

Using (41) in (39) yields

(42)

Thus, given the asymptotic water-level for the primary
link, the asymptotic number of TOs per transmit antenna is given
by the following expression:

(43)

Note that the number of TOs as well as the number
of independent symbols that the secondary link can simultane-
ously transmit are basically determined by the number of an-
tennas and the SNR of the primary system. From (27), it be-
comes clear that the higher the SNR of the primary link, the
lower the number of TOs. Nonetheless, as we shall see in the
numerical examples in Section V, for practical values of SNR
there exist a nonzero number of TOs the secondary can always
exploit.

B. Asymptotic Transmission Rate of the Opportunistic Link

In this subsection, we analyze the behavior of the oppor-
tunistic rate per antenna

(44)
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in the RLNA. Interestingly, this quantity can be shown to con-
verge to a limit, the latter being independent of the realization
of . In the present work, we essentially use this limit to con-
duct a performance analysis of the system under investigation
but it is important to know that it can be further exploited, for in-
stance, to prove some properties, or simplify optimization prob-
lems [23]. A key transform for analyzing quantities associated
with large systems is the Stieltjes transform, which we define
in Appendix B. By exploiting the Stieltjes transform and results
from random matrix theory for large systems (See Appendix B),
it is possible to find the limit of (44) in the RLNA. The corre-
sponding result is as follows.

Proposition 5 (Asymptotic Transmission Rate): Define the
matrices

(45)

(46)

(47)

and consider the system model described in Section II with a
primary link using the configuration described
in Section III-A, and a secondary link with the configuration

described in Sections III-C, III-D, with any
PA matrix independent from the noise level . Then, in the
RLNA (Def. 4), under the assumption that and
have limiting eigenvalue distributions and with
compact support, the transmission rate per antenna of the op-
portunistic link converges almost surely to

(48)

where and are the Stieltjes transforms of the
limiting eigenvalue distribution of matrices and , respec-
tively. and are obtained by solving the fixed
point equations (with unique solution when [24]):

(49)

and

(50)

respectively, where the functions and are defined as
follows:

(51)

(52)

with the expectations in (51) and (52) taken on the random vari-
ables and with distribution and , respec-
tively.

Fig. 2. Fraction of transmit opportunities in the RLNA (Def. 4), i.e., � (27)
as function of the ��� � � �� and � �� �� . Simulation results
are obtained by using one realization of the matrix� when � � ��.

Proof: For the proof, see Appendix C.
The (nontrivial) result in Proposition 5 holds for any power

allocation matrix independent of . In particular, the case
of the uniform power allocation policy perfectly meets this as-
sumption. This also means that it holds for the optimum PA
policy in the high SNR regime. For low and medium SNRs,
the authors have noticed that the matrix is in general
not independent of . This is because is obtained from a
water-filling procedure. The corresponding technical problem
is not trivial and is therefore left as an extension of the present
work.

V. NUMERICAL RESULTS

A. The Number of Transmit Opportunities

As shown in (27), the number of TOs is a function of the
number of antennas and the SNR of the primary link. In Fig. 2,
we plot the number of TOs per transmit antenna as a func-
tion of the SNR for different number of antennas in the receiver
and transmitter of the primary link. Interestingly, even though
the number of TOs is a nonincreasing function of the SNR,
Fig. 2 shows that for practical values of the SNR (10–20 dBs)
there exists a nonzero number of TOs. Note also that the number
of TOs is an increasing function of the ratio .
For instance, in the case , i.e., the sec-
ondary transmitters always sees a nonzero number of TOs in-
dependently of the SNR of the primary link, and thus, oppor-
tunistic communications are always feasible. On the contrary,
when , the feasibility of opportunistic communications
depends on the SNR of the primary link.

Finally, it is important to remark that even though, the anal-
ysis of the number of TOs has been done in the RLNA (Def. 4),
the model is also valid for finite number of antennas. In Fig. 2,
we have also plotted the number of TOs observed for a given re-
alization of the channel transfer matrix when and

. Therein, it can be seen how the theoretical
result from (27) matches the simulation results.
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B. Comparison Between OIA and ZFBF

We compare our OIA scheme with the zero-forcing beam-
forming (ZFBF) scheme [18]. Within this scheme, the pre-pro-
cessing matrix , denoted by , satisfies the condition

(53)

which implies that ZFBF is feasible only in some particular
cases regarding the rank of matrix . For instance, when

and is full column rank, the pre-processing ma-
trix is the null matrix, i.e., and thus, no
transmission takes place. On the contrary, in the case of OIA
when , it is still possible to opportunistically transmit
with a nonnull matrix in two cases as shown in Section III-C:

• if ;
• or if and is not full column rank.
Another remark is that when using ZFBF and both primary

and secondary receivers come close, the opportunistic link will
observe a significant power reduction since both the targeted and
nulling directions become difficult to distinguish. This power
reduction will be less significant in the case of OIA since it
always holds that thanks to the
existence of the additional TOs. Strict equality holds only when

. As discussed in Section III-B, the number
of TOs is independent of the position of one receiver with
respect to the other. It rather depends on the channel realization

and the SNR of the primary link.
In the following, for the ease of presentation, we consider that

both primary and secondary devices are equipped with the same
number of antennas and ,
respectively. In this scenario, we consider the cases where

and .
1) Case : In Fig. 3, we consider the case where

, with . In this case, we observe that
even for a small number of antennas, the OIA technique is su-
perior to the classical ZFBF. Moreover, the higher the number
of antennas, the higher the difference between the performance
of both techniques. An important remark here is that, at high
SNR, the performance of ZFBF and OIA is almost identical.
This is basically because at high SNR, the number of TOs tends
to its lower bound (from (8)), which coincides with
the number of spatial directions to which ZFBF can avoid in-
terfering. Another remark is that both UPA and OPA schemes
perform identically at high SNR.

2) Case : In this case, the ZFBF solution is not
feasible and thus, we focus only on the OIA solution. In Fig. 4,
we plot the transmission rate for the case where

. We observe that at high SNR for the primary link and
small number of antennas, the uniform PA performs similarly as
the optimal PA. For a higher number of antennas and low SNR
in the primary link, the difference between the uniform and op-
timal PA is significant. To show the impact of the SINR of both
primary and secondary links on the opportunistic transmission
rate, we present Fig. 5. Therein, it can be seen clearly that the
transmission rate in the opportunistic link is inversely propor-
tional to the SNR level at the primary link. This is due to the lack
of TOs as stated in Section III-B. For the case when
with strict inequality, an opportunistic transmission takes place

Fig. 3. Transmission rate of the opportunistic link obtained by Monte Carlo
simulations as a function of the ��� � ��� when IA and ZFBF are
implemented. The number of antennas satisfy � � � �� � ���, with
� � � � � and � � � � � � ��� �� and ��� � � �� ,
for all � � �	� 
�.

Fig. 4. Transmission rate of the opportunistic link obtained by Monte Carlo
simulations as a function of the ��� � ��� . The number of antennas
satisfy � � � � � and � � � � � , with � � � , and � �
����� �� and ��� � � �� , for all � � �	�
�.

only if and is not full column rank. Here,
the behavior of the opportunistic transmission rate is similar to
the case with the particularity that the opportunistic
transmission rate reaches zero at a lower SNR level. As in the
previous case, this is also a consequence of the number of avail-
able TOs.

C. Asymptotic Transmission Rate

In Fig. 6, we plot both primary and secondary transmission
rates for a given realization of matrices .
We also plot the asymptotes obtained from Proposition 5 con-
sidering UPA in the secondary link and the optimal PA of the
primary link (4). We observe that in both cases the transmis-
sion rate converges rapidly to the asymptotes even for a small
number of antennas. This shows that Proposition 5 constitutes a
good estimation of the achievable transmission rate for the sec-
ondary link even for finite number of antennas. We use Propo-
sition 5 to compare the asymptotic transmission rate of the sec-
ondary and primary link. The asymptotic transmission rate of
the primary receiver corresponds to the capacity of a single user

MIMO link whose asymptotes are provided in [25].
From Fig. 6, it becomes evident how the secondary link is able
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Fig. 5. Transmission rate of the opportunistic link obtained by Monte Carlo
simulations as a function of the ��� � � �� , with � � ��� ��. The
number of antennas satisfy � � � � � and � � � � � , with
� � � � �.

Fig. 6. Asymptotic transmission rates per antenna of the opportunistic link as
a function of the number of antennas when � � � using uniform PA at dif-
ferent SNR levels ��� � � �� . Simulation results are obtained using
one channel realization for matrices� ���� �	 � ����� and theoretical re-
sults using Proposition 5.

to achieve transmission rates of the same order as the primary
link depending on both its own SNR and that of the primary link.

VI. CONCLUSION

In this paper, we proposed a technique to recycle spatial di-
rections left unused by a primary MIMO link, so that they can
be reused by secondary links. Interestingly, the number of spa-
tial directions can be evaluated analytically and shown to be
sufficiently high to allow a secondary system to achieve a sig-
nificant transmission rate. We provided a signal construction
technique to exploit those spatial resources and a power allo-
cation policy which maximizes the opportunistic transmission
rate. Based on our asymptotical analysis, we show that this tech-
nique allows a secondary link to achieve transmission rates of
the same order as those of the primary link, depending on their
respective SNRs. To mention few interesting extensions of this
work, we recall that our solution concerns only two MIMO
links. The case where there exists several opportunistic devices
and/or several primary devices remains to be studied in details.
More importantly, some information assumptions could be re-

laxed to make the proposed approach more practical. This re-
mark concerns CSI assumptions but also behavioral assump-
tions. Indeed, it was assumed that the precoding scheme used
by the primary transmitter is capacity-achieving, which allows
the secondary transmitter to predict how the secondary trans-
mitter is going to exploit its spatial resources. This behavioral
assumption could be relaxed but some spatial sensing mecha-
nisms should be designed to know which spatial modes can be
effectively used by the secondary transmitter, which could be an
interesting extension of the proposed scheme.

APPENDIX A
PROOF OF LEMMA 1

Here, we prove Lemma 1 which states that: if a matrix
satisfies the condition then it meets the
IA condition (3).

Proof: Let be a sorted SVD of
matrix , with and , two unitary matrices of sizes

and , respectively, and an
matrix with main diagonal and
zeros on its off-diagonal, such that

. Given that the singular values of the matrix

are sorted, we can write matrix as a block
matrix,

(54)
where the diagonal matrix of size is

.
Now let us split the interference-plus-noise covariance matrix

(9) as

(55)
where and are invertible Her-
mitian matrices, and matrices , and are defined from
(9) and (11) as

(56)

(57)

(58)

Now, by plugging expressions (54) and (55) in (10), the IA
condition can be rewritten as follows:

(59)

Note that there exists several choices for the submatrices ,
, and allowing the equality in (59) to be met. We see that
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a possible choice in order to meet the IA condition is ,
, independently of the matrix . Thus, from (56) and

(57) we have and by imposing the condition
, for any given PA matrix , which con-

cludes the proof.

APPENDIX B
DEFINITIONS

In this appendix, we present useful definitions and previous
results used in the proofs of Appendix C.

Definition 6: Let be an random matrix with empirical
eigenvalue distribution function . We define the following
transforms associated with the distribution , for

:

Stieltjes transform: (60)

(61)

S-transform: (62)

where the function is the reciprocal function of ,
i.e.,

(63)

From (60) and (61), we obtain the following relationship be-
tween the function (named -transform in [26]) and the
Stieltjes transform ,

(64)

APPENDIX C
PROOF OF PROPOSITION 5

In this appendix, we provide a proof of Proposition 5 on the
asymptotic expression of the opportunistic transmission rate per
antenna, defined by

First, we list the steps of the proof and then we present a
detailed development for each of them:
Step 1) Express as function of the

Stieltjes transforms and .
Step 2) Obtain .
Step 3) Obtain .
Step 4) Integrate to obtain

.
Step 1: Express as a Function of the

Stieltjes Transforms and : Using (16) and (15),

the opportunistic rate per receive antenna can be rewritten
as follows:

(65)

with ,
, and . Matrices

and are Hermitian Gramian matrices with eigenvalue
decomposition and ,
respectively. Matrix and are uni-
tary matrices, and and

are square diagonal matrices
containing the eigenvalues of the matrices and in
decreasing order. Expression (65) can be written as

(66)

where and are respectively the empirical eigen-
value distributions of matrices and of size , that
converge almost surely to the asymptotic eigenvalue distribu-
tions and , respectively. and have a compact
support. Indeed the empirical eigenvalue distribution of Wishart
matrices converges almost surely to the compactly
supported Marčenko-Pastur law, and by assumption, matrices

, have a limit eigenvalue distribution with
a compact support. Then by Lemma 5 in [27], the asymptotic
eigenvalue distribution of and have a compact support.
The logarithm function being continuous, it is bounded on the
compact supports of the asymptotic eigenvalue distributions
of and , therefore, the almost sure convergence in (66)
could be obtained by using the bounded convergence theorem
[28].

From (66), the derivative of the asymptotic rate
with respect to the noise power can be

written as

(67)
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where and are the Stieltjes transforms of the
asymptotic eigenvalue distributions and , respectively.

Step 2: Obtain : Matrix can be written as

(68)

The entries of the matrix are zero-mean
i.i.d. complex Gaussian with variance ,
thus is bi-unitarily invariant. Matrix is uni-
tary, consequently has the same distribution as

, in particular its entries are i.i.d. with mean zero and
variance . From (4), is diagonal, and by assump-
tion it has a limit eigenvalue distribution . Thus, we can
apply Theorem 1.1 in [24] to , in the particular case where

to obtain the Stieltjes transform of the asymptotic
eigenvalue distribution of matrix

(69)

where the function is defined by

where the random variable follows the c.d.f. .
The square null matrix has an asymptotic eigenvalue distri-

bution . Thus, its Stieltjes transform is

(70)

Then, using expressions (69) and (70), we obtain

(71)

Expression (71) is a fixed-point equation with unique solution
when [24].

Step 3: Obtain : Recall that

(72)

To obtain the Stieltjes transform , we apply Theorem 1.1 in
[24] as in Step 2:

(73)

To obtain the Stieltjes transform of the asymp-
totic eigenvalue distribution function of the matrix

, we first express its -transform as

and by Lemma 1 in [27]:

and by Theorem 1 in [29]:

(74)

The -transforms and in expression
(74) can be written as functions of their -transforms:

(75)

from (62)

(76)

Then, plugging (75) and (76) into (74) yields

(77)

Now, using the relation (64) between the -transform and the
Stieltjes transform, we write

(78)

and from (73), we obtain

(79)
We handle (79) to obtain as a function of

:
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(80)

From the definition of the -transform (61), it follows that

(81)

Using (81) in (80), we have

(82)
with the function defined as follows

where the random variable follows the distribution .
Factorizing in (82) finally yields

(83)

Expression (83) is a fixed point equation with unique solution
when [24].

Step 4: Integrate to Obtain in
the RLNA: From (67), we have that

(84)
Moreover, it is know that if no reliable communication
is possible and thus, . Hence, the asymptotic rate of

the opportunistic link can be obtained by integrating expression
(84)

(85)

which ends the proof.

REFERENCES

[1] S. M. Perlaza, M. Debbah, S. Lasaulce, and J.-M. Chaufray, “Oppor-
tunistic interference alignment in MIMO interference channels,” pre-
sented at the Proc. IEEE 19th Intl. Symp. Personal, Indoor, Mobile
Radio Communications (PIMRC), Cannes, France, Sep. 2008.

[2] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb.
2005.

[3] M. Haddad, A. Hayar, and M. Debbah, “Spectral efficiency of spec-
trum-pooling systems,” IET Commun., vol. 2, no. 6, p. 733, 2008.

[4] M. Maddah-Ali, A. Motahari, and A. Khandani, “Communication over
X channel: Signalling and multiplexing gain,” Univ. of Waterloo, Wa-
terloo, ON, Canada, Tech. Rep. UW-ECE-2006-12, 2006, .

[5] M. Maddah-Ali, A. Motahari, and A. Khandani, “Communication
over MIMO X channels: Interference alignment, decomposition, and
performance analysis,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp.
3457–3470, Aug. 2008.

[6] V. Cadambe and S. Jafar, “Interference alignment and degrees of
freedom of the �-user interference channel,” IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[7] H. Weingarten, S. Shamai, and G. Kramer, “On the compound MIMO
broadcast channel,” presented at the Annu. Inf. Theory Applications
Workshop, Tel Aviv, Israel, Jan. 2007.

[8] S. Jafar and M. Fakhereddin, “Degrees of freedom for the MIMO
interference channel,” IEEE Trans. Inf. Theory, vol. 53, no. 7, pp.
2637–2642, Jul. 2007.

[9] V. Cadambe, S. Jafar, and S. Shamai, “Interference alignment on the
deterministic channel and application to fully connected AWGN inter-
ference networks,” presented at the IEEE Inf. Theory Workshop (ITW),
Porto, Portugal, May 2008.

[10] S. W. Peters and R. W. Heath, “Interference alignment via alternating
minimization,” presented at the IEEE Int. Conf. Acoustics, Speech,
Signal Processing (ICASSP), Taipei, Taiwan, Apr. 2009.

[11] J. Thukral and H. Bölcskei, “Interference alignment with limited feed-
back,” presented at the IEEE Int. Symp. Information Theory (ISIT),
Seoul, Korea, Jun. 2009.

[12] K. Gomadam, V. Cadambe, and S. Jafar, “Approaching the capacity
of wireless networks through distributed interference alignment,” pre-
sented at the IEEE Global Telecommun. Conf. (IEEE GLOBECOM),
New Orleans, LA, Dec. 2008.

[13] R. Tresch, M. Guillaud, and E. Riegler, “On the achievability of inter-
ference alignment in the K-user constant MIMO interference channel,”
presented at the IEEE Workshop Stat. Signal Process. (SSP), Cardiff,
Wales, U.K., Sep. 2009.

[14] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–596, Nov. 1999.

[15] S. Vishwanath and S. Jafar, “On the capacity of vector Gaussian inter-
ference channels,” presented at the IEEE Inf. Theory Workshop (ITW),
San Antonio, TX, Oct. 2004.

[16] X. Shang, B. Chen, and M. Gans, “On the achievable sum rate for
MIMO interference channels,” IEEE Trans. Inf. Theory, vol. 52, no.
9, pp. 4313–4320, Sep. 2006.

[17] E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T Bell
Labs., Murray Hill, NJ, Tech. Rep., 1995.

[18] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[19] F. Neeser and J. Massey, “Proper complex random processes with ap-
plications to information theory,” IEEE Trans. Inf. Theory, vol. 39, no.
4, pp. 1293–1302, Jul. 1993.

[20] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and
Its Applications. Norwell, MA: Academic, 1979.
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